Properties

Label 1875.46
Modulus 18751875
Conductor 625625
Order 125125
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1875, base_ring=CyclotomicField(250)) M = H._module chi = DirichletCharacter(H, M([0,216]))
 
Copy content pari:[g,chi] = znchar(Mod(46,1875))
 

Basic properties

Modulus: 18751875
Conductor: 625625
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 125125
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ625(46,)\chi_{625}(46,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1875.s

χ1875(16,)\chi_{1875}(16,\cdot) χ1875(31,)\chi_{1875}(31,\cdot) χ1875(46,)\chi_{1875}(46,\cdot) χ1875(61,)\chi_{1875}(61,\cdot) χ1875(91,)\chi_{1875}(91,\cdot) χ1875(106,)\chi_{1875}(106,\cdot) χ1875(121,)\chi_{1875}(121,\cdot) χ1875(136,)\chi_{1875}(136,\cdot) χ1875(166,)\chi_{1875}(166,\cdot) χ1875(181,)\chi_{1875}(181,\cdot) χ1875(196,)\chi_{1875}(196,\cdot) χ1875(211,)\chi_{1875}(211,\cdot) χ1875(241,)\chi_{1875}(241,\cdot) χ1875(256,)\chi_{1875}(256,\cdot) χ1875(271,)\chi_{1875}(271,\cdot) χ1875(286,)\chi_{1875}(286,\cdot) χ1875(316,)\chi_{1875}(316,\cdot) χ1875(331,)\chi_{1875}(331,\cdot) χ1875(346,)\chi_{1875}(346,\cdot) χ1875(361,)\chi_{1875}(361,\cdot) χ1875(391,)\chi_{1875}(391,\cdot) χ1875(406,)\chi_{1875}(406,\cdot) χ1875(421,)\chi_{1875}(421,\cdot) χ1875(436,)\chi_{1875}(436,\cdot) χ1875(466,)\chi_{1875}(466,\cdot) χ1875(481,)\chi_{1875}(481,\cdot) χ1875(496,)\chi_{1875}(496,\cdot) χ1875(511,)\chi_{1875}(511,\cdot) χ1875(541,)\chi_{1875}(541,\cdot) χ1875(556,)\chi_{1875}(556,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ125)\Q(\zeta_{125})
Fixed field: Number field defined by a degree 125 polynomial (not computed)

Values on generators

(626,1252)(626,1252)(1,e(108125))(1,e\left(\frac{108}{125}\right))

First values

aa 1-11122447788111113131414161617171919
χ1875(46,a) \chi_{ 1875 }(46, a) 1111e(108125)e\left(\frac{108}{125}\right)e(91125)e\left(\frac{91}{125}\right)e(125)e\left(\frac{1}{25}\right)e(74125)e\left(\frac{74}{125}\right)e(33125)e\left(\frac{33}{125}\right)e(12125)e\left(\frac{12}{125}\right)e(113125)e\left(\frac{113}{125}\right)e(57125)e\left(\frac{57}{125}\right)e(59125)e\left(\frac{59}{125}\right)e(19125)e\left(\frac{19}{125}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ1875(46,a)   \chi_{ 1875 }(46,a) \; at   a=\;a = e.g. 2