sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1875, base_ring=CyclotomicField(250))
M = H._module
chi = DirichletCharacter(H, M([0,216]))
pari:[g,chi] = znchar(Mod(46,1875))
χ1875(16,⋅)
χ1875(31,⋅)
χ1875(46,⋅)
χ1875(61,⋅)
χ1875(91,⋅)
χ1875(106,⋅)
χ1875(121,⋅)
χ1875(136,⋅)
χ1875(166,⋅)
χ1875(181,⋅)
χ1875(196,⋅)
χ1875(211,⋅)
χ1875(241,⋅)
χ1875(256,⋅)
χ1875(271,⋅)
χ1875(286,⋅)
χ1875(316,⋅)
χ1875(331,⋅)
χ1875(346,⋅)
χ1875(361,⋅)
χ1875(391,⋅)
χ1875(406,⋅)
χ1875(421,⋅)
χ1875(436,⋅)
χ1875(466,⋅)
χ1875(481,⋅)
χ1875(496,⋅)
χ1875(511,⋅)
χ1875(541,⋅)
χ1875(556,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(626,1252) → (1,e(125108))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 19 |
χ1875(46,a) |
1 | 1 | e(125108) | e(12591) | e(251) | e(12574) | e(12533) | e(12512) | e(125113) | e(12557) | e(12559) | e(12519) |
sage:chi.jacobi_sum(n)