Properties

Label 1875.541
Modulus $1875$
Conductor $625$
Order $125$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1875, base_ring=CyclotomicField(250))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,172]))
 
pari: [g,chi] = znchar(Mod(541,1875))
 

Basic properties

Modulus: \(1875\)
Conductor: \(625\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(125\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{625}(541,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1875.s

\(\chi_{1875}(16,\cdot)\) \(\chi_{1875}(31,\cdot)\) \(\chi_{1875}(46,\cdot)\) \(\chi_{1875}(61,\cdot)\) \(\chi_{1875}(91,\cdot)\) \(\chi_{1875}(106,\cdot)\) \(\chi_{1875}(121,\cdot)\) \(\chi_{1875}(136,\cdot)\) \(\chi_{1875}(166,\cdot)\) \(\chi_{1875}(181,\cdot)\) \(\chi_{1875}(196,\cdot)\) \(\chi_{1875}(211,\cdot)\) \(\chi_{1875}(241,\cdot)\) \(\chi_{1875}(256,\cdot)\) \(\chi_{1875}(271,\cdot)\) \(\chi_{1875}(286,\cdot)\) \(\chi_{1875}(316,\cdot)\) \(\chi_{1875}(331,\cdot)\) \(\chi_{1875}(346,\cdot)\) \(\chi_{1875}(361,\cdot)\) \(\chi_{1875}(391,\cdot)\) \(\chi_{1875}(406,\cdot)\) \(\chi_{1875}(421,\cdot)\) \(\chi_{1875}(436,\cdot)\) \(\chi_{1875}(466,\cdot)\) \(\chi_{1875}(481,\cdot)\) \(\chi_{1875}(496,\cdot)\) \(\chi_{1875}(511,\cdot)\) \(\chi_{1875}(541,\cdot)\) \(\chi_{1875}(556,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{125})$
Fixed field: Number field defined by a degree 125 polynomial (not computed)

Values on generators

\((626,1252)\) → \((1,e\left(\frac{86}{125}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 1875 }(541, a) \) \(1\)\(1\)\(e\left(\frac{86}{125}\right)\)\(e\left(\frac{47}{125}\right)\)\(e\left(\frac{17}{25}\right)\)\(e\left(\frac{8}{125}\right)\)\(e\left(\frac{61}{125}\right)\)\(e\left(\frac{79}{125}\right)\)\(e\left(\frac{46}{125}\right)\)\(e\left(\frac{94}{125}\right)\)\(e\left(\frac{3}{125}\right)\)\(e\left(\frac{73}{125}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1875 }(541,a) \;\) at \(\;a = \) e.g. 2