L(s) = 1 | + (−0.5 + 0.866i)2-s + (3.70 − 6.42i)3-s + (3.5 + 6.06i)4-s + (−0.208 + 0.360i)5-s + (3.70 + 6.42i)6-s − 14.4·7-s − 15·8-s + (−14 − 24.2i)9-s + (−0.208 − 0.360i)10-s − 37.9·11-s + 51.9·12-s + (36.6 + 63.5i)13-s + (7.20 − 12.4i)14-s + (1.54 + 2.67i)15-s + (−20.5 + 35.5i)16-s + (57.6 − 99.8i)17-s + ⋯ |
L(s) = 1 | + (−0.176 + 0.306i)2-s + (0.713 − 1.23i)3-s + (0.437 + 0.757i)4-s + (−0.0186 + 0.0322i)5-s + (0.252 + 0.437i)6-s − 0.778·7-s − 0.662·8-s + (−0.518 − 0.898i)9-s + (−0.00658 − 0.0113i)10-s − 1.03·11-s + 1.24·12-s + (0.782 + 1.35i)13-s + (0.137 − 0.238i)14-s + (0.0265 + 0.0460i)15-s + (−0.320 + 0.554i)16-s + (0.822 − 1.42i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 19 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 + 0.120i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.992 + 0.120i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.16326 - 0.0704157i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.16326 - 0.0704157i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 19 | \( 1 + (15.6 + 81.3i)T \) |
good | 2 | \( 1 + (0.5 - 0.866i)T + (-4 - 6.92i)T^{2} \) |
| 3 | \( 1 + (-3.70 + 6.42i)T + (-13.5 - 23.3i)T^{2} \) |
| 5 | \( 1 + (0.208 - 0.360i)T + (-62.5 - 108. i)T^{2} \) |
| 7 | \( 1 + 14.4T + 343T^{2} \) |
| 11 | \( 1 + 37.9T + 1.33e3T^{2} \) |
| 13 | \( 1 + (-36.6 - 63.5i)T + (-1.09e3 + 1.90e3i)T^{2} \) |
| 17 | \( 1 + (-57.6 + 99.8i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 23 | \( 1 + (2.54 + 4.40i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (81.4 + 141. i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 - 81.0T + 2.97e4T^{2} \) |
| 37 | \( 1 - 39.0T + 5.06e4T^{2} \) |
| 41 | \( 1 + (164. - 285. i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-88.7 + 153. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + (-24.1 - 41.7i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-324. - 562. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-20.2 + 34.9i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (244. + 422. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (48.6 + 84.1i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + (-47.7 + 82.6i)T + (-1.78e5 - 3.09e5i)T^{2} \) |
| 73 | \( 1 + (65.2 - 113. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (169. - 293. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + 1.21e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-357. - 619. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + (93.4 - 161. i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.31746274463354472166707796772, −16.70477352897153017797265422343, −15.61956858362561245054527816768, −13.74907908827573654150726878296, −12.92528042527716021954554939053, −11.59180350846452901703352689354, −9.095862318629453283956321728588, −7.66963732698634338869232858888, −6.67815208648970580659865166938, −2.81080177139999889406601552746,
3.28410990329869220790991015590, 5.73887525915786512917881324531, 8.437267932235750411788221689331, 10.17266619050044811358202967564, 10.45447838680352329623674941604, 12.76643311611987639263565177189, 14.58065532351422642765923631671, 15.47735260698737009456932652187, 16.29719430542360245890068302798, 18.38623280751933292867241115970