Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [19,4,Mod(7,19)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(19, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("19.7");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 19.c (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 |
|
−0.500000 | − | 0.866025i | −3.70810 | − | 6.42262i | 3.50000 | − | 6.06218i | 7.20810 | + | 12.4848i | −3.70810 | + | 6.42262i | 0.416198 | −15.0000 | −14.0000 | + | 24.2487i | 7.20810 | − | 12.4848i | ||||||||||||||||
7.2 | −0.500000 | − | 0.866025i | 3.70810 | + | 6.42262i | 3.50000 | − | 6.06218i | −0.208099 | − | 0.360438i | 3.70810 | − | 6.42262i | −14.4162 | −15.0000 | −14.0000 | + | 24.2487i | −0.208099 | + | 0.360438i | |||||||||||||||||
11.1 | −0.500000 | + | 0.866025i | −3.70810 | + | 6.42262i | 3.50000 | + | 6.06218i | 7.20810 | − | 12.4848i | −3.70810 | − | 6.42262i | 0.416198 | −15.0000 | −14.0000 | − | 24.2487i | 7.20810 | + | 12.4848i | |||||||||||||||||
11.2 | −0.500000 | + | 0.866025i | 3.70810 | − | 6.42262i | 3.50000 | + | 6.06218i | −0.208099 | + | 0.360438i | 3.70810 | + | 6.42262i | −14.4162 | −15.0000 | −14.0000 | − | 24.2487i | −0.208099 | − | 0.360438i | |||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 19.4.c.a | ✓ | 4 |
3.b | odd | 2 | 1 | 171.4.f.e | 4 | ||
4.b | odd | 2 | 1 | 304.4.i.c | 4 | ||
19.c | even | 3 | 1 | inner | 19.4.c.a | ✓ | 4 |
19.c | even | 3 | 1 | 361.4.a.g | 2 | ||
19.d | odd | 6 | 1 | 361.4.a.d | 2 | ||
57.h | odd | 6 | 1 | 171.4.f.e | 4 | ||
76.g | odd | 6 | 1 | 304.4.i.c | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
19.4.c.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
19.4.c.a | ✓ | 4 | 19.c | even | 3 | 1 | inner |
171.4.f.e | 4 | 3.b | odd | 2 | 1 | ||
171.4.f.e | 4 | 57.h | odd | 6 | 1 | ||
304.4.i.c | 4 | 4.b | odd | 2 | 1 | ||
304.4.i.c | 4 | 76.g | odd | 6 | 1 | ||
361.4.a.d | 2 | 19.d | odd | 6 | 1 | ||
361.4.a.g | 2 | 19.c | even | 3 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .