Properties

Label 19.4.c.a
Level 1919
Weight 44
Character orbit 19.c
Analytic conductor 1.1211.121
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [19,4,Mod(7,19)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(19, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("19.7");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 19 19
Weight: k k == 4 4
Character orbit: [χ][\chi] == 19.c (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.121036290111.12103629011
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(3,55)\Q(\sqrt{-3}, \sqrt{55})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+55x2+3025 x^{4} + 55x^{2} + 3025 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q2+(β3+β1)q3+(7β2+7)q4+(β37β2β1)q5β1q6+(β37)q715q8+(28β228)q9++(392β2196β1392)q99+O(q100) q + \beta_{2} q^{2} + (\beta_{3} + \beta_1) q^{3} + (7 \beta_{2} + 7) q^{4} + ( - \beta_{3} - 7 \beta_{2} - \beta_1) q^{5} - \beta_1 q^{6} + ( - \beta_{3} - 7) q^{7} - 15 q^{8} + ( - 28 \beta_{2} - 28) q^{9}+ \cdots + ( - 392 \beta_{2} - 196 \beta_1 - 392) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q2+14q4+14q528q760q856q9+14q10+56q11+28q13+14q14+110q1582q16+112q17+112q18196q19+196q20110q21+784q99+O(q100) 4 q - 2 q^{2} + 14 q^{4} + 14 q^{5} - 28 q^{7} - 60 q^{8} - 56 q^{9} + 14 q^{10} + 56 q^{11} + 28 q^{13} + 14 q^{14} + 110 q^{15} - 82 q^{16} + 112 q^{17} + 112 q^{18} - 196 q^{19} + 196 q^{20} - 110 q^{21}+ \cdots - 784 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+55x2+3025 x^{4} + 55x^{2} + 3025 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/55 ( \nu^{2} ) / 55 Copy content Toggle raw display
β3\beta_{3}== (ν3)/55 ( \nu^{3} ) / 55 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 55β2 55\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 55β3 55\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/19Z)×\left(\mathbb{Z}/19\mathbb{Z}\right)^\times.

nn 22
χ(n)\chi(n) 1β2-1 - \beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
7.1
3.70810 6.42262i
−3.70810 + 6.42262i
3.70810 + 6.42262i
−3.70810 6.42262i
−0.500000 0.866025i −3.70810 6.42262i 3.50000 6.06218i 7.20810 + 12.4848i −3.70810 + 6.42262i 0.416198 −15.0000 −14.0000 + 24.2487i 7.20810 12.4848i
7.2 −0.500000 0.866025i 3.70810 + 6.42262i 3.50000 6.06218i −0.208099 0.360438i 3.70810 6.42262i −14.4162 −15.0000 −14.0000 + 24.2487i −0.208099 + 0.360438i
11.1 −0.500000 + 0.866025i −3.70810 + 6.42262i 3.50000 + 6.06218i 7.20810 12.4848i −3.70810 6.42262i 0.416198 −15.0000 −14.0000 24.2487i 7.20810 + 12.4848i
11.2 −0.500000 + 0.866025i 3.70810 6.42262i 3.50000 + 6.06218i −0.208099 + 0.360438i 3.70810 + 6.42262i −14.4162 −15.0000 −14.0000 24.2487i −0.208099 0.360438i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 19.4.c.a 4
3.b odd 2 1 171.4.f.e 4
4.b odd 2 1 304.4.i.c 4
19.c even 3 1 inner 19.4.c.a 4
19.c even 3 1 361.4.a.g 2
19.d odd 6 1 361.4.a.d 2
57.h odd 6 1 171.4.f.e 4
76.g odd 6 1 304.4.i.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
19.4.c.a 4 1.a even 1 1 trivial
19.4.c.a 4 19.c even 3 1 inner
171.4.f.e 4 3.b odd 2 1
171.4.f.e 4 57.h odd 6 1
304.4.i.c 4 4.b odd 2 1
304.4.i.c 4 76.g odd 6 1
361.4.a.d 2 19.d odd 6 1
361.4.a.g 2 19.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T22+T2+1 T_{2}^{2} + T_{2} + 1 acting on S4new(19,[χ])S_{4}^{\mathrm{new}}(19, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
33 T4+55T2+3025 T^{4} + 55T^{2} + 3025 Copy content Toggle raw display
55 T414T3++36 T^{4} - 14 T^{3} + \cdots + 36 Copy content Toggle raw display
77 (T2+14T6)2 (T^{2} + 14 T - 6)^{2} Copy content Toggle raw display
1111 (T228T2499)2 (T^{2} - 28 T - 2499)^{2} Copy content Toggle raw display
1313 T428T3++11048976 T^{4} - 28 T^{3} + \cdots + 11048976 Copy content Toggle raw display
1717 T4112T3++147456 T^{4} - 112 T^{3} + \cdots + 147456 Copy content Toggle raw display
1919 T4+196T3++47045881 T^{4} + 196 T^{3} + \cdots + 47045881 Copy content Toggle raw display
2323 T4+114T3++306916 T^{4} + 114 T^{3} + \cdots + 306916 Copy content Toggle raw display
2929 T4+222T3++92659876 T^{4} + 222 T^{3} + \cdots + 92659876 Copy content Toggle raw display
3131 (T2266T+14994)2 (T^{2} - 266 T + 14994)^{2} Copy content Toggle raw display
3737 (T2182T+5586)2 (T^{2} - 182 T + 5586)^{2} Copy content Toggle raw display
4141 T4++3323637801 T^{4} + \cdots + 3323637801 Copy content Toggle raw display
4343 T4++6251116096 T^{4} + \cdots + 6251116096 Copy content Toggle raw display
4747 T4+126T3++70660836 T^{4} + 126 T^{3} + \cdots + 70660836 Copy content Toggle raw display
5353 T4++23178235536 T^{4} + \cdots + 23178235536 Copy content Toggle raw display
5959 T4+112T3++37933281 T^{4} + 112 T^{3} + \cdots + 37933281 Copy content Toggle raw display
6161 T4+546T3++799419076 T^{4} + 546 T^{3} + \cdots + 799419076 Copy content Toggle raw display
6767 T4++6625146025 T^{4} + \cdots + 6625146025 Copy content Toggle raw display
7171 T4++2536532496 T^{4} + \cdots + 2536532496 Copy content Toggle raw display
7373 T4+350T3++820536025 T^{4} + 350 T^{3} + \cdots + 820536025 Copy content Toggle raw display
7979 T4++27790223616 T^{4} + \cdots + 27790223616 Copy content Toggle raw display
8383 (T2+1904T+838929)2 (T^{2} + 1904 T + 838929)^{2} Copy content Toggle raw display
8989 T4++350160961536 T^{4} + \cdots + 350160961536 Copy content Toggle raw display
9797 T4++18739145881 T^{4} + \cdots + 18739145881 Copy content Toggle raw display
show more
show less