Properties

Label 2-19-1.1-c5-0-3
Degree $2$
Conductor $19$
Sign $1$
Analytic cond. $3.04729$
Root an. cond. $1.74564$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.37·2-s − 3.41·3-s + 22.4·4-s + 108.·5-s − 25.1·6-s − 80.6·7-s − 70.6·8-s − 231.·9-s + 800.·10-s − 472.·11-s − 76.5·12-s + 639.·13-s − 594.·14-s − 370.·15-s − 1.23e3·16-s + 478.·17-s − 1.70e3·18-s + 361·19-s + 2.43e3·20-s + 275.·21-s − 3.48e3·22-s − 190.·23-s + 241.·24-s + 8.65e3·25-s + 4.71e3·26-s + 1.61e3·27-s − 1.80e3·28-s + ⋯
L(s)  = 1  + 1.30·2-s − 0.219·3-s + 0.700·4-s + 1.94·5-s − 0.285·6-s − 0.622·7-s − 0.390·8-s − 0.952·9-s + 2.53·10-s − 1.17·11-s − 0.153·12-s + 1.04·13-s − 0.811·14-s − 0.425·15-s − 1.20·16-s + 0.401·17-s − 1.24·18-s + 0.229·19-s + 1.35·20-s + 0.136·21-s − 1.53·22-s − 0.0749·23-s + 0.0855·24-s + 2.76·25-s + 1.36·26-s + 0.427·27-s − 0.435·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19\)
Sign: $1$
Analytic conductor: \(3.04729\)
Root analytic conductor: \(1.74564\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.519319203\)
\(L(\frac12)\) \(\approx\) \(2.519319203\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad19 \( 1 - 361T \)
good2 \( 1 - 7.37T + 32T^{2} \)
3 \( 1 + 3.41T + 243T^{2} \)
5 \( 1 - 108.T + 3.12e3T^{2} \)
7 \( 1 + 80.6T + 1.68e4T^{2} \)
11 \( 1 + 472.T + 1.61e5T^{2} \)
13 \( 1 - 639.T + 3.71e5T^{2} \)
17 \( 1 - 478.T + 1.41e6T^{2} \)
23 \( 1 + 190.T + 6.43e6T^{2} \)
29 \( 1 + 1.84e3T + 2.05e7T^{2} \)
31 \( 1 - 381.T + 2.86e7T^{2} \)
37 \( 1 + 7.53e3T + 6.93e7T^{2} \)
41 \( 1 - 1.30e4T + 1.15e8T^{2} \)
43 \( 1 - 2.07e4T + 1.47e8T^{2} \)
47 \( 1 - 1.16e4T + 2.29e8T^{2} \)
53 \( 1 + 6.50e3T + 4.18e8T^{2} \)
59 \( 1 + 2.94e4T + 7.14e8T^{2} \)
61 \( 1 - 1.09e4T + 8.44e8T^{2} \)
67 \( 1 + 5.13e4T + 1.35e9T^{2} \)
71 \( 1 - 4.83e4T + 1.80e9T^{2} \)
73 \( 1 + 829.T + 2.07e9T^{2} \)
79 \( 1 + 8.82e4T + 3.07e9T^{2} \)
83 \( 1 - 1.61e4T + 3.93e9T^{2} \)
89 \( 1 + 2.14e4T + 5.58e9T^{2} \)
97 \( 1 - 1.63e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.45498751107657677016098092274, −15.99503224744896544461783648807, −14.30125195043826012973489098203, −13.54321105546753378491555252021, −12.67648076189829934273544966978, −10.72770315762460556906986048843, −9.175710294921058131929316016309, −6.12505511149204918988044270822, −5.45686701406109831448983355719, −2.79576152434414397203283737437, 2.79576152434414397203283737437, 5.45686701406109831448983355719, 6.12505511149204918988044270822, 9.175710294921058131929316016309, 10.72770315762460556906986048843, 12.67648076189829934273544966978, 13.54321105546753378491555252021, 14.30125195043826012973489098203, 15.99503224744896544461783648807, 17.45498751107657677016098092274

Graph of the $Z$-function along the critical line