L(s) = 1 | + 7.37·2-s − 3.41·3-s + 22.4·4-s + 108.·5-s − 25.1·6-s − 80.6·7-s − 70.6·8-s − 231.·9-s + 800.·10-s − 472.·11-s − 76.5·12-s + 639.·13-s − 594.·14-s − 370.·15-s − 1.23e3·16-s + 478.·17-s − 1.70e3·18-s + 361·19-s + 2.43e3·20-s + 275.·21-s − 3.48e3·22-s − 190.·23-s + 241.·24-s + 8.65e3·25-s + 4.71e3·26-s + 1.61e3·27-s − 1.80e3·28-s + ⋯ |
L(s) = 1 | + 1.30·2-s − 0.219·3-s + 0.700·4-s + 1.94·5-s − 0.285·6-s − 0.622·7-s − 0.390·8-s − 0.952·9-s + 2.53·10-s − 1.17·11-s − 0.153·12-s + 1.04·13-s − 0.811·14-s − 0.425·15-s − 1.20·16-s + 0.401·17-s − 1.24·18-s + 0.229·19-s + 1.35·20-s + 0.136·21-s − 1.53·22-s − 0.0749·23-s + 0.0855·24-s + 2.76·25-s + 1.36·26-s + 0.427·27-s − 0.435·28-s + ⋯ |
Λ(s)=(=(19s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(19s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
2.519319203 |
L(21) |
≈ |
2.519319203 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 19 | 1−361T |
good | 2 | 1−7.37T+32T2 |
| 3 | 1+3.41T+243T2 |
| 5 | 1−108.T+3.12e3T2 |
| 7 | 1+80.6T+1.68e4T2 |
| 11 | 1+472.T+1.61e5T2 |
| 13 | 1−639.T+3.71e5T2 |
| 17 | 1−478.T+1.41e6T2 |
| 23 | 1+190.T+6.43e6T2 |
| 29 | 1+1.84e3T+2.05e7T2 |
| 31 | 1−381.T+2.86e7T2 |
| 37 | 1+7.53e3T+6.93e7T2 |
| 41 | 1−1.30e4T+1.15e8T2 |
| 43 | 1−2.07e4T+1.47e8T2 |
| 47 | 1−1.16e4T+2.29e8T2 |
| 53 | 1+6.50e3T+4.18e8T2 |
| 59 | 1+2.94e4T+7.14e8T2 |
| 61 | 1−1.09e4T+8.44e8T2 |
| 67 | 1+5.13e4T+1.35e9T2 |
| 71 | 1−4.83e4T+1.80e9T2 |
| 73 | 1+829.T+2.07e9T2 |
| 79 | 1+8.82e4T+3.07e9T2 |
| 83 | 1−1.61e4T+3.93e9T2 |
| 89 | 1+2.14e4T+5.58e9T2 |
| 97 | 1−1.63e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.45498751107657677016098092274, −15.99503224744896544461783648807, −14.30125195043826012973489098203, −13.54321105546753378491555252021, −12.67648076189829934273544966978, −10.72770315762460556906986048843, −9.175710294921058131929316016309, −6.12505511149204918988044270822, −5.45686701406109831448983355719, −2.79576152434414397203283737437,
2.79576152434414397203283737437, 5.45686701406109831448983355719, 6.12505511149204918988044270822, 9.175710294921058131929316016309, 10.72770315762460556906986048843, 12.67648076189829934273544966978, 13.54321105546753378491555252021, 14.30125195043826012973489098203, 15.99503224744896544461783648807, 17.45498751107657677016098092274