Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [19,6,Mod(1,19)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(19, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("19.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 19.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−9.25474 | −28.7849 | 53.6502 | 45.0454 | 266.396 | −170.409 | −200.367 | 585.568 | −416.883 | ||||||||||||||||||||||||||||||
1.2 | 1.84953 | 30.2395 | −28.5793 | 10.2772 | 55.9287 | 19.2784 | −112.043 | 671.426 | 19.0079 | |||||||||||||||||||||||||||||||
1.3 | 7.37689 | −3.41393 | 22.4185 | 108.514 | −25.1842 | −80.6465 | −70.6815 | −231.345 | 800.499 | |||||||||||||||||||||||||||||||
1.4 | 9.02832 | 7.95930 | 49.5106 | −73.8370 | 71.8591 | 41.7769 | 158.091 | −179.649 | −666.624 | |||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 19.6.a.d | ✓ | 4 |
3.b | odd | 2 | 1 | 171.6.a.i | 4 | ||
4.b | odd | 2 | 1 | 304.6.a.l | 4 | ||
5.b | even | 2 | 1 | 475.6.a.e | 4 | ||
7.b | odd | 2 | 1 | 931.6.a.d | 4 | ||
19.b | odd | 2 | 1 | 361.6.a.e | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
19.6.a.d | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
171.6.a.i | 4 | 3.b | odd | 2 | 1 | ||
304.6.a.l | 4 | 4.b | odd | 2 | 1 | ||
361.6.a.e | 4 | 19.b | odd | 2 | 1 | ||
475.6.a.e | 4 | 5.b | even | 2 | 1 | ||
931.6.a.d | 4 | 7.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .