gp: [N,k,chi] = [361,6,Mod(1,361)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(361, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 6, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("361.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: traces = [4,-9]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − x 3 − 84 x 2 − 154 x + 484 x^{4} - x^{3} - 84x^{2} - 154x + 484 x 4 − x 3 − 8 4 x 2 − 1 5 4 x + 4 8 4
x^4 - x^3 - 84*x^2 - 154*x + 484
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 3 − ν 2 − 62 ν − 132 ) / 22 ( \nu^{3} - \nu^{2} - 62\nu - 132 ) / 22 ( ν 3 − ν 2 − 6 2 ν − 1 3 2 ) / 2 2
(v^3 - v^2 - 62*v - 132) / 22
β 3 \beta_{3} β 3 = = =
( − 2 ν 3 + 13 ν 2 + 102 ν − 220 ) / 11 ( -2\nu^{3} + 13\nu^{2} + 102\nu - 220 ) / 11 ( − 2 ν 3 + 1 3 ν 2 + 1 0 2 ν − 2 2 0 ) / 1 1
(-2*v^3 + 13*v^2 + 102*v - 220) / 11
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 3 + 4 β 2 + 2 β 1 + 44 \beta_{3} + 4\beta_{2} + 2\beta _1 + 44 β 3 + 4 β 2 + 2 β 1 + 4 4
b3 + 4*b2 + 2*b1 + 44
ν 3 \nu^{3} ν 3 = = =
β 3 + 26 β 2 + 64 β 1 + 176 \beta_{3} + 26\beta_{2} + 64\beta _1 + 176 β 3 + 2 6 β 2 + 6 4 β 1 + 1 7 6
b3 + 26*b2 + 64*b1 + 176
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
19 19 1 9
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 2 4 + 9 T 2 3 − 72 T 2 2 − 774 T 2 − 1140 T_{2}^{4} + 9T_{2}^{3} - 72T_{2}^{2} - 774T_{2} - 1140 T 2 4 + 9 T 2 3 − 7 2 T 2 2 − 7 7 4 T 2 − 1 1 4 0
T2^4 + 9*T2^3 - 72*T2^2 - 774*T2 - 1140
acting on S 6 n e w ( Γ 0 ( 361 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(361)) S 6 n e w ( Γ 0 ( 3 6 1 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 + 9 T 3 + ⋯ − 1140 T^{4} + 9 T^{3} + \cdots - 1140 T 4 + 9 T 3 + ⋯ − 1 1 4 0
T^4 + 9*T^3 - 72*T^2 - 774*T - 1140
3 3 3
T 4 + 6 T 3 + ⋯ + 23652 T^{4} + 6 T^{3} + \cdots + 23652 T 4 + 6 T 3 + ⋯ + 2 3 6 5 2
T^4 + 6*T^3 - 891*T^2 - 3996*T + 23652
5 5 5
T 4 − 90 T 3 + ⋯ − 3709248 T^{4} - 90 T^{3} + \cdots - 3709248 T 4 − 9 0 T 3 + ⋯ − 3 7 0 9 2 4 8
T^4 - 90*T^3 - 5631*T^2 + 427212*T - 3709248
7 7 7
T 4 + 190 T 3 + ⋯ + 11068411 T^{4} + 190 T^{3} + \cdots + 11068411 T 4 + 1 9 0 T 3 + ⋯ + 1 1 0 6 8 4 1 1
T^4 + 190*T^3 - 780*T^2 - 636878*T + 11068411
11 11 1 1
T 4 + ⋯ + 23023022796 T^{4} + \cdots + 23023022796 T 4 + ⋯ + 2 3 0 2 3 0 2 2 7 9 6
T^4 + 162*T^3 - 422091*T^2 - 81387504*T + 23023022796
13 13 1 3
T 4 + ⋯ + 19147784368 T^{4} + \cdots + 19147784368 T 4 + ⋯ + 1 9 1 4 7 7 8 4 3 6 8
T^4 - 52*T^3 - 421077*T^2 + 43634984*T + 19147784368
17 17 1 7
T 4 + ⋯ + 597258958449 T^{4} + \cdots + 597258958449 T 4 + ⋯ + 5 9 7 2 5 8 9 5 8 4 4 9
T^4 + 288*T^3 - 2052402*T^2 - 441826848*T + 597258958449
19 19 1 9
T 4 T^{4} T 4
T^4
23 23 2 3
T 4 + ⋯ − 6908113340160 T^{4} + \cdots - 6908113340160 T 4 + ⋯ − 6 9 0 8 1 1 3 3 4 0 1 6 0
T^4 - 9900*T^3 + 31520571*T^2 - 29955652704*T - 6908113340160
29 29 2 9
T 4 + ⋯ + 56401950031212 T^{4} + \cdots + 56401950031212 T 4 + ⋯ + 5 6 4 0 1 9 5 0 0 3 1 2 1 2
T^4 + 4176*T^3 - 10692777*T^2 - 31339154700*T + 56401950031212
31 31 3 1
T 4 + ⋯ − 5096621276672 T^{4} + \cdots - 5096621276672 T 4 + ⋯ − 5 0 9 6 6 2 1 2 7 6 6 7 2
T^4 + 13580*T^3 + 36785424*T^2 - 1266177472*T - 5096621276672
37 37 3 7
T 4 + ⋯ + 63 ⋯ 52 T^{4} + \cdots + 63\!\cdots\!52 T 4 + ⋯ + 6 3 ⋯ 5 2
T^4 + 1172*T^3 - 175373664*T^2 - 17237560912*T + 6365660907920752
41 41 4 1
T 4 + ⋯ + 813179406508032 T^{4} + \cdots + 813179406508032 T 4 + ⋯ + 8 1 3 1 7 9 4 0 6 5 0 8 0 3 2
T^4 + 9540*T^3 - 87034140*T^2 - 468085180608*T + 813179406508032
43 43 4 3
T 4 + ⋯ + 13 ⋯ 16 T^{4} + \cdots + 13\!\cdots\!16 T 4 + ⋯ + 1 3 ⋯ 1 6
T^4 - 13370*T^3 - 238114695*T^2 + 1117530034132*T + 13224295964370016
47 47 4 7
T 4 + ⋯ − 942340690593024 T^{4} + \cdots - 942340690593024 T 4 + ⋯ − 9 4 2 3 4 0 6 9 0 5 9 3 0 2 4
T^4 - 28098*T^3 + 16529481*T^2 + 2125370457864*T - 942340690593024
53 53 5 3
T 4 + ⋯ + 13 ⋯ 52 T^{4} + \cdots + 13\!\cdots\!52 T 4 + ⋯ + 1 3 ⋯ 5 2
T^4 + 34740*T^3 - 215994525*T^2 - 2417877286776*T + 13514460982907952
59 59 5 9
T 4 + ⋯ + 19 ⋯ 36 T^{4} + \cdots + 19\!\cdots\!36 T 4 + ⋯ + 1 9 ⋯ 3 6
T^4 + 9702*T^3 - 1487899683*T^2 + 3184990747164*T + 197460228941644836
61 61 6 1
T 4 + ⋯ − 10 ⋯ 92 T^{4} + \cdots - 10\!\cdots\!92 T 4 + ⋯ − 1 0 ⋯ 9 2
T^4 + 37978*T^3 - 31913283*T^2 - 4643761518032*T - 10144006296432692
67 67 6 7
T 4 + ⋯ + 19 ⋯ 12 T^{4} + \cdots + 19\!\cdots\!12 T 4 + ⋯ + 1 9 ⋯ 1 2
T^4 - 2974*T^3 - 3399843207*T^2 + 8155288679000*T + 1992835358829060112
71 71 7 1
T 4 + ⋯ + 16 ⋯ 16 T^{4} + \cdots + 16\!\cdots\!16 T 4 + ⋯ + 1 6 ⋯ 1 6
T^4 + 32220*T^3 - 718058208*T^2 + 2958926025744*T + 1659943870844016
73 73 7 3
T 4 + ⋯ + 12 ⋯ 37 T^{4} + \cdots + 12\!\cdots\!37 T 4 + ⋯ + 1 2 ⋯ 3 7
T^4 + 86908*T^3 + 2181828102*T^2 + 16457736452476*T + 12195686687175937
79 79 7 9
T 4 + ⋯ − 20 ⋯ 56 T^{4} + \cdots - 20\!\cdots\!56 T 4 + ⋯ − 2 0 ⋯ 5 6
T^4 - 165736*T^3 + 6058367052*T^2 + 92232915500480*T - 2068098417951885056
83 83 8 3
T 4 + ⋯ − 13 ⋯ 16 T^{4} + \cdots - 13\!\cdots\!16 T 4 + ⋯ − 1 3 ⋯ 1 6
T^4 + 146448*T^3 + 4137891228*T^2 - 26558028132768*T - 1325549961450398016
89 89 8 9
T 4 + ⋯ + 38 ⋯ 72 T^{4} + \cdots + 38\!\cdots\!72 T 4 + ⋯ + 3 8 ⋯ 7 2
T^4 - 26604*T^3 - 3031336176*T^2 + 65630986054848*T + 38144875881948672
97 97 9 7
T 4 + ⋯ + 42 ⋯ 12 T^{4} + \cdots + 42\!\cdots\!12 T 4 + ⋯ + 4 2 ⋯ 1 2
T^4 + 313820*T^3 + 30060887844*T^2 + 896157150390848*T + 423617787303930112
show more
show less