Properties

Label 361.6.a.e
Level 361361
Weight 66
Character orbit 361.a
Self dual yes
Analytic conductor 57.89957.899
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [361,6,Mod(1,361)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(361, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("361.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 361=192 361 = 19^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 361.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 57.898558952557.8985589525
Analytic rank: 00
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x384x2154x+484 x^{4} - x^{3} - 84x^{2} - 154x + 484 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 19)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β2+β13)q2+(3β23)q3+(β33β2++23)q4+(4β33β2+22)q5+(3β315β2++81)q6++(3096β317271β2+62406)q99+O(q100) q + ( - \beta_{2} + \beta_1 - 3) q^{2} + ( - 3 \beta_{2} - 3) q^{3} + ( - \beta_{3} - 3 \beta_{2} + \cdots + 23) q^{4} + (4 \beta_{3} - 3 \beta_{2} + 22) q^{5} + ( - 3 \beta_{3} - 15 \beta_{2} + \cdots + 81) q^{6}+ \cdots + (3096 \beta_{3} - 17271 \beta_{2} + \cdots - 62406) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q9q26q3+97q4+90q5+369q6190q7+225q8+846q9+264q10162q11+2091q12+52q131395q14+1944q15551q16288q17+7506q18+229338q99+O(q100) 4 q - 9 q^{2} - 6 q^{3} + 97 q^{4} + 90 q^{5} + 369 q^{6} - 190 q^{7} + 225 q^{8} + 846 q^{9} + 264 q^{10} - 162 q^{11} + 2091 q^{12} + 52 q^{13} - 1395 q^{14} + 1944 q^{15} - 551 q^{16} - 288 q^{17} + 7506 q^{18}+ \cdots - 229338 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x384x2154x+484 x^{4} - x^{3} - 84x^{2} - 154x + 484 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3ν262ν132)/22 ( \nu^{3} - \nu^{2} - 62\nu - 132 ) / 22 Copy content Toggle raw display
β3\beta_{3}== (2ν3+13ν2+102ν220)/11 ( -2\nu^{3} + 13\nu^{2} + 102\nu - 220 ) / 11 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+4β2+2β1+44 \beta_{3} + 4\beta_{2} + 2\beta _1 + 44 Copy content Toggle raw display
ν3\nu^{3}== β3+26β2+64β1+176 \beta_{3} + 26\beta_{2} + 64\beta _1 + 176 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−4.37522
−6.51487
10.2303
1.65978
−9.02832 −7.95930 49.5106 −73.8370 71.8591 41.7769 −158.091 −179.649 666.624
1.2 −7.37689 3.41393 22.4185 108.514 −25.1842 −80.6465 70.6815 −231.345 −800.499
1.3 −1.84953 −30.2395 −28.5793 10.2772 55.9287 19.2784 112.043 671.426 −19.0079
1.4 9.25474 28.7849 53.6502 45.0454 266.396 −170.409 200.367 585.568 416.883
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
1919 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 361.6.a.e 4
19.b odd 2 1 19.6.a.d 4
57.d even 2 1 171.6.a.i 4
76.d even 2 1 304.6.a.l 4
95.d odd 2 1 475.6.a.e 4
133.c even 2 1 931.6.a.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
19.6.a.d 4 19.b odd 2 1
171.6.a.i 4 57.d even 2 1
304.6.a.l 4 76.d even 2 1
361.6.a.e 4 1.a even 1 1 trivial
475.6.a.e 4 95.d odd 2 1
931.6.a.d 4 133.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T24+9T2372T22774T21140 T_{2}^{4} + 9T_{2}^{3} - 72T_{2}^{2} - 774T_{2} - 1140 acting on S6new(Γ0(361))S_{6}^{\mathrm{new}}(\Gamma_0(361)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+9T3+1140 T^{4} + 9 T^{3} + \cdots - 1140 Copy content Toggle raw display
33 T4+6T3++23652 T^{4} + 6 T^{3} + \cdots + 23652 Copy content Toggle raw display
55 T490T3+3709248 T^{4} - 90 T^{3} + \cdots - 3709248 Copy content Toggle raw display
77 T4+190T3++11068411 T^{4} + 190 T^{3} + \cdots + 11068411 Copy content Toggle raw display
1111 T4++23023022796 T^{4} + \cdots + 23023022796 Copy content Toggle raw display
1313 T4++19147784368 T^{4} + \cdots + 19147784368 Copy content Toggle raw display
1717 T4++597258958449 T^{4} + \cdots + 597258958449 Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T4+6908113340160 T^{4} + \cdots - 6908113340160 Copy content Toggle raw display
2929 T4++56401950031212 T^{4} + \cdots + 56401950031212 Copy content Toggle raw display
3131 T4+5096621276672 T^{4} + \cdots - 5096621276672 Copy content Toggle raw display
3737 T4++63 ⁣ ⁣52 T^{4} + \cdots + 63\!\cdots\!52 Copy content Toggle raw display
4141 T4++813179406508032 T^{4} + \cdots + 813179406508032 Copy content Toggle raw display
4343 T4++13 ⁣ ⁣16 T^{4} + \cdots + 13\!\cdots\!16 Copy content Toggle raw display
4747 T4+942340690593024 T^{4} + \cdots - 942340690593024 Copy content Toggle raw display
5353 T4++13 ⁣ ⁣52 T^{4} + \cdots + 13\!\cdots\!52 Copy content Toggle raw display
5959 T4++19 ⁣ ⁣36 T^{4} + \cdots + 19\!\cdots\!36 Copy content Toggle raw display
6161 T4+10 ⁣ ⁣92 T^{4} + \cdots - 10\!\cdots\!92 Copy content Toggle raw display
6767 T4++19 ⁣ ⁣12 T^{4} + \cdots + 19\!\cdots\!12 Copy content Toggle raw display
7171 T4++16 ⁣ ⁣16 T^{4} + \cdots + 16\!\cdots\!16 Copy content Toggle raw display
7373 T4++12 ⁣ ⁣37 T^{4} + \cdots + 12\!\cdots\!37 Copy content Toggle raw display
7979 T4+20 ⁣ ⁣56 T^{4} + \cdots - 20\!\cdots\!56 Copy content Toggle raw display
8383 T4+13 ⁣ ⁣16 T^{4} + \cdots - 13\!\cdots\!16 Copy content Toggle raw display
8989 T4++38 ⁣ ⁣72 T^{4} + \cdots + 38\!\cdots\!72 Copy content Toggle raw display
9797 T4++42 ⁣ ⁣12 T^{4} + \cdots + 42\!\cdots\!12 Copy content Toggle raw display
show more
show less