L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.5 − 0.866i)4-s + (−0.499 − 0.866i)9-s − 0.999·12-s + (0.5 − 0.866i)13-s + (−0.499 + 0.866i)16-s + (−0.5 − 0.866i)19-s + 25-s − 0.999·27-s − 2·31-s + (−0.499 + 0.866i)36-s + (0.5 − 0.866i)37-s + (−0.499 − 0.866i)39-s + (0.5 + 0.866i)43-s + (0.499 + 0.866i)48-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.5 − 0.866i)4-s + (−0.499 − 0.866i)9-s − 0.999·12-s + (0.5 − 0.866i)13-s + (−0.499 + 0.866i)16-s + (−0.5 − 0.866i)19-s + 25-s − 0.999·27-s − 2·31-s + (−0.499 + 0.866i)36-s + (0.5 − 0.866i)37-s + (−0.499 − 0.866i)39-s + (0.5 + 0.866i)43-s + (0.499 + 0.866i)48-s + ⋯ |
Λ(s)=(=(1911s/2ΓC(s)L(s)(−0.711+0.702i)Λ(1−s)
Λ(s)=(=(1911s/2ΓC(s)L(s)(−0.711+0.702i)Λ(1−s)
Degree: |
2 |
Conductor: |
1911
= 3⋅72⋅13
|
Sign: |
−0.711+0.702i
|
Analytic conductor: |
0.953713 |
Root analytic conductor: |
0.976582 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1911(932,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1911, ( :0), −0.711+0.702i)
|
Particular Values
L(21) |
≈ |
1.075277547 |
L(21) |
≈ |
1.075277547 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.5+0.866i)T |
| 7 | 1 |
| 13 | 1+(−0.5+0.866i)T |
good | 2 | 1+(0.5+0.866i)T2 |
| 5 | 1−T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 17 | 1+(0.5−0.866i)T2 |
| 19 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 23 | 1+(0.5+0.866i)T2 |
| 29 | 1+(0.5+0.866i)T2 |
| 31 | 1+2T+T2 |
| 37 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 41 | 1+(0.5+0.866i)T2 |
| 43 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 47 | 1−T2 |
| 53 | 1−T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 71 | 1+(0.5−0.866i)T2 |
| 73 | 1−T+T2 |
| 79 | 1−2T+T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.055138029617111243271782938313, −8.433519947829370315942967901258, −7.54597049667449703388064285091, −6.72656206201205974021336890579, −5.94312688844674896336377359163, −5.23254816683026408419955155472, −4.11291657171887009703308756930, −3.04066019187052892660605350481, −1.93051786631205222761730056941, −0.76093550577132874140630587934,
2.02481444343192156444126202768, 3.21554307014154957171017323561, 3.87767303691356768798776058003, 4.57355223528254881244179533414, 5.46855858750128013691048401194, 6.61266398511722379631599483924, 7.61256818486104446635497022027, 8.251738121883670363180207639903, 9.104006363988677245194226858925, 9.281178927848861083330441581942