L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.5 − 0.866i)4-s + (−0.499 − 0.866i)9-s − 0.999·12-s + (0.5 − 0.866i)13-s + (−0.499 + 0.866i)16-s + (−0.5 − 0.866i)19-s + 25-s − 0.999·27-s − 2·31-s + (−0.499 + 0.866i)36-s + (0.5 − 0.866i)37-s + (−0.499 − 0.866i)39-s + (0.5 + 0.866i)43-s + (0.499 + 0.866i)48-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.5 − 0.866i)4-s + (−0.499 − 0.866i)9-s − 0.999·12-s + (0.5 − 0.866i)13-s + (−0.499 + 0.866i)16-s + (−0.5 − 0.866i)19-s + 25-s − 0.999·27-s − 2·31-s + (−0.499 + 0.866i)36-s + (0.5 − 0.866i)37-s + (−0.499 − 0.866i)39-s + (0.5 + 0.866i)43-s + (0.499 + 0.866i)48-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1911 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.711 + 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1911 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.711 + 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.075277547\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.075277547\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
| 13 | \( 1 + (-0.5 + 0.866i)T \) |
good | 2 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 - T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + 2T + T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( 1 - 2T + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.055138029617111243271782938313, −8.433519947829370315942967901258, −7.54597049667449703388064285091, −6.72656206201205974021336890579, −5.94312688844674896336377359163, −5.23254816683026408419955155472, −4.11291657171887009703308756930, −3.04066019187052892660605350481, −1.93051786631205222761730056941, −0.76093550577132874140630587934,
2.02481444343192156444126202768, 3.21554307014154957171017323561, 3.87767303691356768798776058003, 4.57355223528254881244179533414, 5.46855858750128013691048401194, 6.61266398511722379631599483924, 7.61256818486104446635497022027, 8.251738121883670363180207639903, 9.104006363988677245194226858925, 9.281178927848861083330441581942