L(s) = 1 | + 4.74·2-s + 3·3-s + 14.4·4-s − 4.51·5-s + 14.2·6-s + 30.7·8-s + 9·9-s − 21.4·10-s − 66.8·11-s + 43.4·12-s + 13·13-s − 13.5·15-s + 29.8·16-s − 96.9·17-s + 42.6·18-s − 31.4·19-s − 65.4·20-s − 317.·22-s + 183.·23-s + 92.2·24-s − 104.·25-s + 61.6·26-s + 27·27-s + 112.·29-s − 64.2·30-s + 77.2·31-s − 104.·32-s + ⋯ |
L(s) = 1 | + 1.67·2-s + 0.577·3-s + 1.81·4-s − 0.403·5-s + 0.967·6-s + 1.35·8-s + 0.333·9-s − 0.677·10-s − 1.83·11-s + 1.04·12-s + 0.277·13-s − 0.233·15-s + 0.467·16-s − 1.38·17-s + 0.558·18-s − 0.380·19-s − 0.731·20-s − 3.07·22-s + 1.66·23-s + 0.784·24-s − 0.836·25-s + 0.464·26-s + 0.192·27-s + 0.718·29-s − 0.391·30-s + 0.447·31-s − 0.575·32-s + ⋯ |
Λ(s)=(=(1911s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1911s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 7 | 1 |
| 13 | 1−13T |
good | 2 | 1−4.74T+8T2 |
| 5 | 1+4.51T+125T2 |
| 11 | 1+66.8T+1.33e3T2 |
| 17 | 1+96.9T+4.91e3T2 |
| 19 | 1+31.4T+6.85e3T2 |
| 23 | 1−183.T+1.21e4T2 |
| 29 | 1−112.T+2.43e4T2 |
| 31 | 1−77.2T+2.97e4T2 |
| 37 | 1−54.7T+5.06e4T2 |
| 41 | 1+451.T+6.89e4T2 |
| 43 | 1+113.T+7.95e4T2 |
| 47 | 1−42.2T+1.03e5T2 |
| 53 | 1+530.T+1.48e5T2 |
| 59 | 1+219.T+2.05e5T2 |
| 61 | 1+822.T+2.26e5T2 |
| 67 | 1+872.T+3.00e5T2 |
| 71 | 1+100.T+3.57e5T2 |
| 73 | 1−165.T+3.89e5T2 |
| 79 | 1+545.T+4.93e5T2 |
| 83 | 1−454.T+5.71e5T2 |
| 89 | 1−230.T+7.04e5T2 |
| 97 | 1−1.08e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.288347183102860276836602310675, −7.49523734192482130163724293757, −6.72643995566860476874215053249, −5.91051238360503669601829896524, −4.77227033238490162556810899645, −4.62588227147322334931894378046, −3.32870206181933918744786977180, −2.83422529011940116004151051014, −1.90348968547955548894483240166, 0,
1.90348968547955548894483240166, 2.83422529011940116004151051014, 3.32870206181933918744786977180, 4.62588227147322334931894378046, 4.77227033238490162556810899645, 5.91051238360503669601829896524, 6.72643995566860476874215053249, 7.49523734192482130163724293757, 8.288347183102860276836602310675