Properties

Label 2-1911-1.1-c3-0-242
Degree $2$
Conductor $1911$
Sign $-1$
Analytic cond. $112.752$
Root an. cond. $10.6185$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.74·2-s + 3·3-s + 14.4·4-s − 4.51·5-s + 14.2·6-s + 30.7·8-s + 9·9-s − 21.4·10-s − 66.8·11-s + 43.4·12-s + 13·13-s − 13.5·15-s + 29.8·16-s − 96.9·17-s + 42.6·18-s − 31.4·19-s − 65.4·20-s − 317.·22-s + 183.·23-s + 92.2·24-s − 104.·25-s + 61.6·26-s + 27·27-s + 112.·29-s − 64.2·30-s + 77.2·31-s − 104.·32-s + ⋯
L(s)  = 1  + 1.67·2-s + 0.577·3-s + 1.81·4-s − 0.403·5-s + 0.967·6-s + 1.35·8-s + 0.333·9-s − 0.677·10-s − 1.83·11-s + 1.04·12-s + 0.277·13-s − 0.233·15-s + 0.467·16-s − 1.38·17-s + 0.558·18-s − 0.380·19-s − 0.731·20-s − 3.07·22-s + 1.66·23-s + 0.784·24-s − 0.836·25-s + 0.464·26-s + 0.192·27-s + 0.718·29-s − 0.391·30-s + 0.447·31-s − 0.575·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1911 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1911 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1911\)    =    \(3 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(112.752\)
Root analytic conductor: \(10.6185\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1911,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
7 \( 1 \)
13 \( 1 - 13T \)
good2 \( 1 - 4.74T + 8T^{2} \)
5 \( 1 + 4.51T + 125T^{2} \)
11 \( 1 + 66.8T + 1.33e3T^{2} \)
17 \( 1 + 96.9T + 4.91e3T^{2} \)
19 \( 1 + 31.4T + 6.85e3T^{2} \)
23 \( 1 - 183.T + 1.21e4T^{2} \)
29 \( 1 - 112.T + 2.43e4T^{2} \)
31 \( 1 - 77.2T + 2.97e4T^{2} \)
37 \( 1 - 54.7T + 5.06e4T^{2} \)
41 \( 1 + 451.T + 6.89e4T^{2} \)
43 \( 1 + 113.T + 7.95e4T^{2} \)
47 \( 1 - 42.2T + 1.03e5T^{2} \)
53 \( 1 + 530.T + 1.48e5T^{2} \)
59 \( 1 + 219.T + 2.05e5T^{2} \)
61 \( 1 + 822.T + 2.26e5T^{2} \)
67 \( 1 + 872.T + 3.00e5T^{2} \)
71 \( 1 + 100.T + 3.57e5T^{2} \)
73 \( 1 - 165.T + 3.89e5T^{2} \)
79 \( 1 + 545.T + 4.93e5T^{2} \)
83 \( 1 - 454.T + 5.71e5T^{2} \)
89 \( 1 - 230.T + 7.04e5T^{2} \)
97 \( 1 - 1.08e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.288347183102860276836602310675, −7.49523734192482130163724293757, −6.72643995566860476874215053249, −5.91051238360503669601829896524, −4.77227033238490162556810899645, −4.62588227147322334931894378046, −3.32870206181933918744786977180, −2.83422529011940116004151051014, −1.90348968547955548894483240166, 0, 1.90348968547955548894483240166, 2.83422529011940116004151051014, 3.32870206181933918744786977180, 4.62588227147322334931894378046, 4.77227033238490162556810899645, 5.91051238360503669601829896524, 6.72643995566860476874215053249, 7.49523734192482130163724293757, 8.288347183102860276836602310675

Graph of the $Z$-function along the critical line