Properties

Label 1911.4.a.h
Level $1911$
Weight $4$
Character orbit 1911.a
Self dual yes
Analytic conductor $112.753$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1911,4,Mod(1,1911)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1911, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1911.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1911.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.752650021\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{14}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{14}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 1) q^{2} + 3 q^{3} + (2 \beta + 7) q^{4} + (2 \beta - 12) q^{5} + (3 \beta + 3) q^{6} + (\beta + 27) q^{8} + 9 q^{9} + ( - 10 \beta + 16) q^{10} + ( - 12 \beta - 22) q^{11} + (6 \beta + 21) q^{12}+ \cdots + ( - 108 \beta - 198) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 6 q^{3} + 14 q^{4} - 24 q^{5} + 6 q^{6} + 54 q^{8} + 18 q^{9} + 32 q^{10} - 44 q^{11} + 42 q^{12} + 26 q^{13} - 72 q^{15} - 30 q^{16} - 164 q^{17} + 18 q^{18} - 48 q^{19} - 56 q^{20} - 380 q^{22}+ \cdots - 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.74166
3.74166
−2.74166 3.00000 −0.483315 −19.4833 −8.22497 0 23.2583 9.00000 53.4166
1.2 4.74166 3.00000 14.4833 −4.51669 14.2250 0 30.7417 9.00000 −21.4166
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1911.4.a.h 2
7.b odd 2 1 39.4.a.b 2
21.c even 2 1 117.4.a.c 2
28.d even 2 1 624.4.a.r 2
35.c odd 2 1 975.4.a.j 2
56.e even 2 1 2496.4.a.s 2
56.h odd 2 1 2496.4.a.bc 2
84.h odd 2 1 1872.4.a.t 2
91.b odd 2 1 507.4.a.f 2
91.i even 4 2 507.4.b.f 4
273.g even 2 1 1521.4.a.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.4.a.b 2 7.b odd 2 1
117.4.a.c 2 21.c even 2 1
507.4.a.f 2 91.b odd 2 1
507.4.b.f 4 91.i even 4 2
624.4.a.r 2 28.d even 2 1
975.4.a.j 2 35.c odd 2 1
1521.4.a.s 2 273.g even 2 1
1872.4.a.t 2 84.h odd 2 1
1911.4.a.h 2 1.a even 1 1 trivial
2496.4.a.s 2 56.e even 2 1
2496.4.a.bc 2 56.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1911))\):

\( T_{2}^{2} - 2T_{2} - 13 \) Copy content Toggle raw display
\( T_{5}^{2} + 24T_{5} + 88 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T - 13 \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 24T + 88 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 44T - 1532 \) Copy content Toggle raw display
$13$ \( (T - 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 164T + 6500 \) Copy content Toggle raw display
$19$ \( T^{2} + 48T + 520 \) Copy content Toggle raw display
$23$ \( T^{2} - 8T - 32240 \) Copy content Toggle raw display
$29$ \( T^{2} - 404T + 32740 \) Copy content Toggle raw display
$31$ \( T^{2} + 40T - 9064 \) Copy content Toggle raw display
$37$ \( T^{2} + 100T - 8476 \) Copy content Toggle raw display
$41$ \( T^{2} + 200T - 113704 \) Copy content Toggle raw display
$43$ \( T^{2} + 616T + 57008 \) Copy content Toggle raw display
$47$ \( T^{2} - 324T + 11908 \) Copy content Toggle raw display
$53$ \( T^{2} + 164T - 194876 \) Copy content Toggle raw display
$59$ \( T^{2} + 140T - 17500 \) Copy content Toggle raw display
$61$ \( T^{2} + 628T - 160348 \) Copy content Toggle raw display
$67$ \( T^{2} + 472T - 348904 \) Copy content Toggle raw display
$71$ \( T^{2} - 428T - 52988 \) Copy content Toggle raw display
$73$ \( T^{2} - 900T + 121636 \) Copy content Toggle raw display
$79$ \( T^{2} + 432T - 61760 \) Copy content Toggle raw display
$83$ \( T^{2} - 1388 T + 424292 \) Copy content Toggle raw display
$89$ \( T^{2} + 960T - 275000 \) Copy content Toggle raw display
$97$ \( T^{2} - 532T - 606844 \) Copy content Toggle raw display
show more
show less