Properties

Label 1911.4.a.h
Level 19111911
Weight 44
Character orbit 1911.a
Self dual yes
Analytic conductor 112.753112.753
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1911,4,Mod(1,1911)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1911, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1911.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1911=37213 1911 = 3 \cdot 7^{2} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1911.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 112.752650021112.752650021
Analytic rank: 11
Dimension: 22
Coefficient field: Q(14)\Q(\sqrt{14})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x214 x^{2} - 14 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 39)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=14\beta = \sqrt{14}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β+1)q2+3q3+(2β+7)q4+(2β12)q5+(3β+3)q6+(β+27)q8+9q9+(10β+16)q10+(12β22)q11+(6β+21)q12++(108β198)q99+O(q100) q + (\beta + 1) q^{2} + 3 q^{3} + (2 \beta + 7) q^{4} + (2 \beta - 12) q^{5} + (3 \beta + 3) q^{6} + (\beta + 27) q^{8} + 9 q^{9} + ( - 10 \beta + 16) q^{10} + ( - 12 \beta - 22) q^{11} + (6 \beta + 21) q^{12}+ \cdots + ( - 108 \beta - 198) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q2+6q3+14q424q5+6q6+54q8+18q9+32q1044q11+42q12+26q1372q1530q16164q17+18q1848q1956q20380q22+396q99+O(q100) 2 q + 2 q^{2} + 6 q^{3} + 14 q^{4} - 24 q^{5} + 6 q^{6} + 54 q^{8} + 18 q^{9} + 32 q^{10} - 44 q^{11} + 42 q^{12} + 26 q^{13} - 72 q^{15} - 30 q^{16} - 164 q^{17} + 18 q^{18} - 48 q^{19} - 56 q^{20} - 380 q^{22}+ \cdots - 396 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−3.74166
3.74166
−2.74166 3.00000 −0.483315 −19.4833 −8.22497 0 23.2583 9.00000 53.4166
1.2 4.74166 3.00000 14.4833 −4.51669 14.2250 0 30.7417 9.00000 −21.4166
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
77 1 -1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1911.4.a.h 2
7.b odd 2 1 39.4.a.b 2
21.c even 2 1 117.4.a.c 2
28.d even 2 1 624.4.a.r 2
35.c odd 2 1 975.4.a.j 2
56.e even 2 1 2496.4.a.s 2
56.h odd 2 1 2496.4.a.bc 2
84.h odd 2 1 1872.4.a.t 2
91.b odd 2 1 507.4.a.f 2
91.i even 4 2 507.4.b.f 4
273.g even 2 1 1521.4.a.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.4.a.b 2 7.b odd 2 1
117.4.a.c 2 21.c even 2 1
507.4.a.f 2 91.b odd 2 1
507.4.b.f 4 91.i even 4 2
624.4.a.r 2 28.d even 2 1
975.4.a.j 2 35.c odd 2 1
1521.4.a.s 2 273.g even 2 1
1872.4.a.t 2 84.h odd 2 1
1911.4.a.h 2 1.a even 1 1 trivial
2496.4.a.s 2 56.e even 2 1
2496.4.a.bc 2 56.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1911))S_{4}^{\mathrm{new}}(\Gamma_0(1911)):

T222T213 T_{2}^{2} - 2T_{2} - 13 Copy content Toggle raw display
T52+24T5+88 T_{5}^{2} + 24T_{5} + 88 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T22T13 T^{2} - 2T - 13 Copy content Toggle raw display
33 (T3)2 (T - 3)^{2} Copy content Toggle raw display
55 T2+24T+88 T^{2} + 24T + 88 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2+44T1532 T^{2} + 44T - 1532 Copy content Toggle raw display
1313 (T13)2 (T - 13)^{2} Copy content Toggle raw display
1717 T2+164T+6500 T^{2} + 164T + 6500 Copy content Toggle raw display
1919 T2+48T+520 T^{2} + 48T + 520 Copy content Toggle raw display
2323 T28T32240 T^{2} - 8T - 32240 Copy content Toggle raw display
2929 T2404T+32740 T^{2} - 404T + 32740 Copy content Toggle raw display
3131 T2+40T9064 T^{2} + 40T - 9064 Copy content Toggle raw display
3737 T2+100T8476 T^{2} + 100T - 8476 Copy content Toggle raw display
4141 T2+200T113704 T^{2} + 200T - 113704 Copy content Toggle raw display
4343 T2+616T+57008 T^{2} + 616T + 57008 Copy content Toggle raw display
4747 T2324T+11908 T^{2} - 324T + 11908 Copy content Toggle raw display
5353 T2+164T194876 T^{2} + 164T - 194876 Copy content Toggle raw display
5959 T2+140T17500 T^{2} + 140T - 17500 Copy content Toggle raw display
6161 T2+628T160348 T^{2} + 628T - 160348 Copy content Toggle raw display
6767 T2+472T348904 T^{2} + 472T - 348904 Copy content Toggle raw display
7171 T2428T52988 T^{2} - 428T - 52988 Copy content Toggle raw display
7373 T2900T+121636 T^{2} - 900T + 121636 Copy content Toggle raw display
7979 T2+432T61760 T^{2} + 432T - 61760 Copy content Toggle raw display
8383 T21388T+424292 T^{2} - 1388 T + 424292 Copy content Toggle raw display
8989 T2+960T275000 T^{2} + 960T - 275000 Copy content Toggle raw display
9797 T2532T606844 T^{2} - 532T - 606844 Copy content Toggle raw display
show more
show less