Properties

Label 39.4.a.b
Level $39$
Weight $4$
Character orbit 39.a
Self dual yes
Analytic conductor $2.301$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [39,4,Mod(1,39)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(39, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("39.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 39.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.30107449022\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{14}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{14}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 1) q^{2} - 3 q^{3} + (2 \beta + 7) q^{4} + ( - 2 \beta + 12) q^{5} + ( - 3 \beta - 3) q^{6} - 2 \beta q^{7} + (\beta + 27) q^{8} + 9 q^{9} + (10 \beta - 16) q^{10} + ( - 12 \beta - 22) q^{11} + \cdots + ( - 108 \beta - 198) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 6 q^{3} + 14 q^{4} + 24 q^{5} - 6 q^{6} + 54 q^{8} + 18 q^{9} - 32 q^{10} - 44 q^{11} - 42 q^{12} - 26 q^{13} - 56 q^{14} - 72 q^{15} - 30 q^{16} + 164 q^{17} + 18 q^{18} + 48 q^{19} + 56 q^{20}+ \cdots - 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.74166
3.74166
−2.74166 −3.00000 −0.483315 19.4833 8.22497 7.48331 23.2583 9.00000 −53.4166
1.2 4.74166 −3.00000 14.4833 4.51669 −14.2250 −7.48331 30.7417 9.00000 21.4166
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 39.4.a.b 2
3.b odd 2 1 117.4.a.c 2
4.b odd 2 1 624.4.a.r 2
5.b even 2 1 975.4.a.j 2
7.b odd 2 1 1911.4.a.h 2
8.b even 2 1 2496.4.a.bc 2
8.d odd 2 1 2496.4.a.s 2
12.b even 2 1 1872.4.a.t 2
13.b even 2 1 507.4.a.f 2
13.d odd 4 2 507.4.b.f 4
39.d odd 2 1 1521.4.a.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.4.a.b 2 1.a even 1 1 trivial
117.4.a.c 2 3.b odd 2 1
507.4.a.f 2 13.b even 2 1
507.4.b.f 4 13.d odd 4 2
624.4.a.r 2 4.b odd 2 1
975.4.a.j 2 5.b even 2 1
1521.4.a.s 2 39.d odd 2 1
1872.4.a.t 2 12.b even 2 1
1911.4.a.h 2 7.b odd 2 1
2496.4.a.s 2 8.d odd 2 1
2496.4.a.bc 2 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 2T_{2} - 13 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(39))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T - 13 \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 24T + 88 \) Copy content Toggle raw display
$7$ \( T^{2} - 56 \) Copy content Toggle raw display
$11$ \( T^{2} + 44T - 1532 \) Copy content Toggle raw display
$13$ \( (T + 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 164T + 6500 \) Copy content Toggle raw display
$19$ \( T^{2} - 48T + 520 \) Copy content Toggle raw display
$23$ \( T^{2} - 8T - 32240 \) Copy content Toggle raw display
$29$ \( T^{2} - 404T + 32740 \) Copy content Toggle raw display
$31$ \( T^{2} - 40T - 9064 \) Copy content Toggle raw display
$37$ \( T^{2} + 100T - 8476 \) Copy content Toggle raw display
$41$ \( T^{2} - 200T - 113704 \) Copy content Toggle raw display
$43$ \( T^{2} + 616T + 57008 \) Copy content Toggle raw display
$47$ \( T^{2} + 324T + 11908 \) Copy content Toggle raw display
$53$ \( T^{2} + 164T - 194876 \) Copy content Toggle raw display
$59$ \( T^{2} - 140T - 17500 \) Copy content Toggle raw display
$61$ \( T^{2} - 628T - 160348 \) Copy content Toggle raw display
$67$ \( T^{2} + 472T - 348904 \) Copy content Toggle raw display
$71$ \( T^{2} - 428T - 52988 \) Copy content Toggle raw display
$73$ \( T^{2} + 900T + 121636 \) Copy content Toggle raw display
$79$ \( T^{2} + 432T - 61760 \) Copy content Toggle raw display
$83$ \( T^{2} + 1388 T + 424292 \) Copy content Toggle raw display
$89$ \( T^{2} - 960T - 275000 \) Copy content Toggle raw display
$97$ \( T^{2} + 532T - 606844 \) Copy content Toggle raw display
show more
show less