L(s) = 1 | + (−0.707 − 0.707i)3-s + (1.27 − 1.27i)5-s − 0.158i·7-s + 1.00i·9-s + (3.79 − 3.79i)11-s + (−4.21 − 4.21i)13-s − 1.79·15-s + 3.05·17-s + (2.15 + 2.15i)19-s + (−0.112 + 0.112i)21-s + 2.82i·23-s + 1.76i·25-s + (0.707 − 0.707i)27-s + (2.09 + 2.09i)29-s − 4.15·31-s + ⋯ |
L(s) = 1 | + (−0.408 − 0.408i)3-s + (0.568 − 0.568i)5-s − 0.0600i·7-s + 0.333i·9-s + (1.14 − 1.14i)11-s + (−1.16 − 1.16i)13-s − 0.464·15-s + 0.740·17-s + (0.495 + 0.495i)19-s + (−0.0245 + 0.0245i)21-s + 0.589i·23-s + 0.353i·25-s + (0.136 − 0.136i)27-s + (0.389 + 0.389i)29-s − 0.746·31-s + ⋯ |
Λ(s)=(=(192s/2ΓC(s)L(s)(0.513+0.857i)Λ(2−s)
Λ(s)=(=(192s/2ΓC(s+1/2)L(s)(0.513+0.857i)Λ(1−s)
Degree: |
2 |
Conductor: |
192
= 26⋅3
|
Sign: |
0.513+0.857i
|
Analytic conductor: |
1.53312 |
Root analytic conductor: |
1.23819 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ192(145,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 192, ( :1/2), 0.513+0.857i)
|
Particular Values
L(1) |
≈ |
0.988890−0.560387i |
L(21) |
≈ |
0.988890−0.560387i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.707+0.707i)T |
good | 5 | 1+(−1.27+1.27i)T−5iT2 |
| 7 | 1+0.158iT−7T2 |
| 11 | 1+(−3.79+3.79i)T−11iT2 |
| 13 | 1+(4.21+4.21i)T+13iT2 |
| 17 | 1−3.05T+17T2 |
| 19 | 1+(−2.15−2.15i)T+19iT2 |
| 23 | 1−2.82iT−23T2 |
| 29 | 1+(−2.09−2.09i)T+29iT2 |
| 31 | 1+4.15T+31T2 |
| 37 | 1+(5.98−5.98i)T−37iT2 |
| 41 | 1−2.60iT−41T2 |
| 43 | 1+(5.75−5.75i)T−43iT2 |
| 47 | 1−2.82T+47T2 |
| 53 | 1+(−3.55+3.55i)T−53iT2 |
| 59 | 1+(4−4i)T−59iT2 |
| 61 | 1+(−3.66−3.66i)T+61iT2 |
| 67 | 1+(0.767+0.767i)T+67iT2 |
| 71 | 1−0.317iT−71T2 |
| 73 | 1−1.33iT−73T2 |
| 79 | 1−9.69T+79T2 |
| 83 | 1+(0.115+0.115i)T+83iT2 |
| 89 | 1+14.3iT−89T2 |
| 97 | 1+0.571T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.32427035096230560803436669269, −11.62323711111200958754092101823, −10.36889773308737704783543982604, −9.447744822486151092377390517691, −8.322741191113076581470058029429, −7.20898993143409779916004574814, −5.88520125345707706699712368694, −5.17148727733757249257006093125, −3.30929555236875743010133731146, −1.24264254162198050576480100326,
2.17333486573467991237480334359, 4.03125249694446395002958160784, 5.18640800857765897411880961294, 6.58402442750176547034362222669, 7.23679079770375296003894875878, 9.099073856968484862542039367852, 9.746443733095670553139433762766, 10.60063098243362821913589421191, 11.92860753412365095676112117674, 12.28394846118638302003926688258