L(s) = 1 | + (−0.707 − 0.707i)3-s + (1.27 − 1.27i)5-s − 0.158i·7-s + 1.00i·9-s + (3.79 − 3.79i)11-s + (−4.21 − 4.21i)13-s − 1.79·15-s + 3.05·17-s + (2.15 + 2.15i)19-s + (−0.112 + 0.112i)21-s + 2.82i·23-s + 1.76i·25-s + (0.707 − 0.707i)27-s + (2.09 + 2.09i)29-s − 4.15·31-s + ⋯ |
L(s) = 1 | + (−0.408 − 0.408i)3-s + (0.568 − 0.568i)5-s − 0.0600i·7-s + 0.333i·9-s + (1.14 − 1.14i)11-s + (−1.16 − 1.16i)13-s − 0.464·15-s + 0.740·17-s + (0.495 + 0.495i)19-s + (−0.0245 + 0.0245i)21-s + 0.589i·23-s + 0.353i·25-s + (0.136 − 0.136i)27-s + (0.389 + 0.389i)29-s − 0.746·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.513 + 0.857i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.513 + 0.857i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.988890 - 0.560387i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.988890 - 0.560387i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
good | 5 | \( 1 + (-1.27 + 1.27i)T - 5iT^{2} \) |
| 7 | \( 1 + 0.158iT - 7T^{2} \) |
| 11 | \( 1 + (-3.79 + 3.79i)T - 11iT^{2} \) |
| 13 | \( 1 + (4.21 + 4.21i)T + 13iT^{2} \) |
| 17 | \( 1 - 3.05T + 17T^{2} \) |
| 19 | \( 1 + (-2.15 - 2.15i)T + 19iT^{2} \) |
| 23 | \( 1 - 2.82iT - 23T^{2} \) |
| 29 | \( 1 + (-2.09 - 2.09i)T + 29iT^{2} \) |
| 31 | \( 1 + 4.15T + 31T^{2} \) |
| 37 | \( 1 + (5.98 - 5.98i)T - 37iT^{2} \) |
| 41 | \( 1 - 2.60iT - 41T^{2} \) |
| 43 | \( 1 + (5.75 - 5.75i)T - 43iT^{2} \) |
| 47 | \( 1 - 2.82T + 47T^{2} \) |
| 53 | \( 1 + (-3.55 + 3.55i)T - 53iT^{2} \) |
| 59 | \( 1 + (4 - 4i)T - 59iT^{2} \) |
| 61 | \( 1 + (-3.66 - 3.66i)T + 61iT^{2} \) |
| 67 | \( 1 + (0.767 + 0.767i)T + 67iT^{2} \) |
| 71 | \( 1 - 0.317iT - 71T^{2} \) |
| 73 | \( 1 - 1.33iT - 73T^{2} \) |
| 79 | \( 1 - 9.69T + 79T^{2} \) |
| 83 | \( 1 + (0.115 + 0.115i)T + 83iT^{2} \) |
| 89 | \( 1 + 14.3iT - 89T^{2} \) |
| 97 | \( 1 + 0.571T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.32427035096230560803436669269, −11.62323711111200958754092101823, −10.36889773308737704783543982604, −9.447744822486151092377390517691, −8.322741191113076581470058029429, −7.20898993143409779916004574814, −5.88520125345707706699712368694, −5.17148727733757249257006093125, −3.30929555236875743010133731146, −1.24264254162198050576480100326,
2.17333486573467991237480334359, 4.03125249694446395002958160784, 5.18640800857765897411880961294, 6.58402442750176547034362222669, 7.23679079770375296003894875878, 9.099073856968484862542039367852, 9.746443733095670553139433762766, 10.60063098243362821913589421191, 11.92860753412365095676112117674, 12.28394846118638302003926688258