Properties

Label 192.2.j.a
Level 192192
Weight 22
Character orbit 192.j
Analytic conductor 1.5331.533
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [192,2,Mod(49,192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(192, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("192.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 192=263 192 = 2^{6} \cdot 3
Weight: k k == 2 2
Character orbit: [χ][\chi] == 192.j (of order 44, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.533127718811.53312771881
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(i)\Q(i)
Coefficient field: 8.0.18939904.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x84x7+14x628x5+43x444x3+30x212x+2 x^{8} - 4x^{7} + 14x^{6} - 28x^{5} + 43x^{4} - 44x^{3} + 30x^{2} - 12x + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 24 2^{4}
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q3+(β5β3)q5+(β7+β6++β4)q7+β4q9+(β7β4β1+1)q11+(β7+2β2+β1)q13++(β7+β4β1+1)q99+O(q100) q + \beta_{2} q^{3} + (\beta_{5} - \beta_{3}) q^{5} + (\beta_{7} + \beta_{6} + \cdots + \beta_{4}) q^{7} + \beta_{4} q^{9} + ( - \beta_{7} - \beta_{4} - \beta_1 + 1) q^{11} + ( - \beta_{7} + 2 \beta_{2} + \beta_1) q^{13}+ \cdots + (\beta_{7} + \beta_{4} - \beta_1 + 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+8q11+8q15+8q1916q2924q3124q3516q37+8q438q498q51+16q5332q59+16q618q6316q65+16q67+16q6916q75++8q99+O(q100) 8 q + 8 q^{11} + 8 q^{15} + 8 q^{19} - 16 q^{29} - 24 q^{31} - 24 q^{35} - 16 q^{37} + 8 q^{43} - 8 q^{49} - 8 q^{51} + 16 q^{53} - 32 q^{59} + 16 q^{61} - 8 q^{63} - 16 q^{65} + 16 q^{67} + 16 q^{69} - 16 q^{75}+ \cdots + 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x84x7+14x628x5+43x444x3+30x212x+2 x^{8} - 4x^{7} + 14x^{6} - 28x^{5} + 43x^{4} - 44x^{3} + 30x^{2} - 12x + 2 : Copy content Toggle raw display

β1\beta_{1}== ν6+3ν511ν4+17ν324ν2+16ν5 -\nu^{6} + 3\nu^{5} - 11\nu^{4} + 17\nu^{3} - 24\nu^{2} + 16\nu - 5 Copy content Toggle raw display
β2\beta_{2}== 5ν717ν6+60ν5105ν4+155ν3133ν2+77ν19 5\nu^{7} - 17\nu^{6} + 60\nu^{5} - 105\nu^{4} + 155\nu^{3} - 133\nu^{2} + 77\nu - 19 Copy content Toggle raw display
β3\beta_{3}== 5ν718ν6+63ν5115ν4+170ν3152ν2+89ν23 5\nu^{7} - 18\nu^{6} + 63\nu^{5} - 115\nu^{4} + 170\nu^{3} - 152\nu^{2} + 89\nu - 23 Copy content Toggle raw display
β4\beta_{4}== 8ν728ν6+98ν5175ν4+256ν3223ν2+126ν31 8\nu^{7} - 28\nu^{6} + 98\nu^{5} - 175\nu^{4} + 256\nu^{3} - 223\nu^{2} + 126\nu - 31 Copy content Toggle raw display
β5\beta_{5}== 9ν731ν6+108ν5190ν4+275ν3236ν2+131ν33 9\nu^{7} - 31\nu^{6} + 108\nu^{5} - 190\nu^{4} + 275\nu^{3} - 236\nu^{2} + 131\nu - 33 Copy content Toggle raw display
β6\beta_{6}== 9ν732ν6+111ν5200ν4+290ν3253ν2+141ν33 9\nu^{7} - 32\nu^{6} + 111\nu^{5} - 200\nu^{4} + 290\nu^{3} - 253\nu^{2} + 141\nu - 33 Copy content Toggle raw display
β7\beta_{7}== 10ν735ν6+123ν5220ν4+325ν3285ν2+168ν43 10\nu^{7} - 35\nu^{6} + 123\nu^{5} - 220\nu^{4} + 325\nu^{3} - 285\nu^{2} + 168\nu - 43 Copy content Toggle raw display
ν\nu== (β7β3β2+1)/2 ( \beta_{7} - \beta_{3} - \beta_{2} + 1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β7+β6β52β33)/2 ( \beta_{7} + \beta_{6} - \beta_{5} - 2\beta_{3} - 3 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (2β7+2β6β53β4+2β3+5β25)/2 ( -2\beta_{7} + 2\beta_{6} - \beta_{5} - 3\beta_{4} + 2\beta_{3} + 5\beta_{2} - 5 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (5β7β6+3β56β4+12β3+4β22β1+7)/2 ( -5\beta_{7} - \beta_{6} + 3\beta_{5} - 6\beta_{4} + 12\beta_{3} + 4\beta_{2} - 2\beta _1 + 7 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (3β710β6+5β5+10β4+6β319β25β1+26)/2 ( 3\beta_{7} - 10\beta_{6} + 5\beta_{5} + 10\beta_{4} + 6\beta_{3} - 19\beta_{2} - 5\beta _1 + 26 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== (22β79β611β5+45β448β332β2+5β16)/2 ( 22\beta_{7} - 9\beta_{6} - 11\beta_{5} + 45\beta_{4} - 48\beta_{3} - 32\beta_{2} + 5\beta _1 - 6 ) / 2 Copy content Toggle raw display
ν7\nu^{7}== (7β7+33β630β583β3+64β2+35β1118)/2 ( 7\beta_{7} + 33\beta_{6} - 30\beta_{5} - 83\beta_{3} + 64\beta_{2} + 35\beta _1 - 118 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/192Z)×\left(\mathbb{Z}/192\mathbb{Z}\right)^\times.

nn 6565 127127 133133
χ(n)\chi(n) 11 11 β4-\beta_{4}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
0.500000 + 0.691860i
0.500000 2.10607i
0.500000 0.0297061i
0.500000 + 1.44392i
0.500000 0.691860i
0.500000 + 2.10607i
0.500000 + 0.0297061i
0.500000 1.44392i
0 −0.707107 + 0.707107i 0 −2.68554 2.68554i 0 2.15894i 0 1.00000i 0
49.2 0 −0.707107 + 0.707107i 0 1.27133 + 1.27133i 0 0.158942i 0 1.00000i 0
49.3 0 0.707107 0.707107i 0 −0.334904 0.334904i 0 4.55765i 0 1.00000i 0
49.4 0 0.707107 0.707107i 0 1.74912 + 1.74912i 0 2.55765i 0 1.00000i 0
145.1 0 −0.707107 0.707107i 0 −2.68554 + 2.68554i 0 2.15894i 0 1.00000i 0
145.2 0 −0.707107 0.707107i 0 1.27133 1.27133i 0 0.158942i 0 1.00000i 0
145.3 0 0.707107 + 0.707107i 0 −0.334904 + 0.334904i 0 4.55765i 0 1.00000i 0
145.4 0 0.707107 + 0.707107i 0 1.74912 1.74912i 0 2.55765i 0 1.00000i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
16.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 192.2.j.a 8
3.b odd 2 1 576.2.k.b 8
4.b odd 2 1 48.2.j.a 8
8.b even 2 1 384.2.j.a 8
8.d odd 2 1 384.2.j.b 8
12.b even 2 1 144.2.k.b 8
16.e even 4 1 inner 192.2.j.a 8
16.e even 4 1 384.2.j.a 8
16.f odd 4 1 48.2.j.a 8
16.f odd 4 1 384.2.j.b 8
24.f even 2 1 1152.2.k.c 8
24.h odd 2 1 1152.2.k.f 8
32.g even 8 1 3072.2.a.n 4
32.g even 8 1 3072.2.a.o 4
32.g even 8 2 3072.2.d.i 8
32.h odd 8 1 3072.2.a.i 4
32.h odd 8 1 3072.2.a.t 4
32.h odd 8 2 3072.2.d.f 8
48.i odd 4 1 576.2.k.b 8
48.i odd 4 1 1152.2.k.f 8
48.k even 4 1 144.2.k.b 8
48.k even 4 1 1152.2.k.c 8
96.o even 8 1 9216.2.a.y 4
96.o even 8 1 9216.2.a.bo 4
96.p odd 8 1 9216.2.a.x 4
96.p odd 8 1 9216.2.a.bn 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
48.2.j.a 8 4.b odd 2 1
48.2.j.a 8 16.f odd 4 1
144.2.k.b 8 12.b even 2 1
144.2.k.b 8 48.k even 4 1
192.2.j.a 8 1.a even 1 1 trivial
192.2.j.a 8 16.e even 4 1 inner
384.2.j.a 8 8.b even 2 1
384.2.j.a 8 16.e even 4 1
384.2.j.b 8 8.d odd 2 1
384.2.j.b 8 16.f odd 4 1
576.2.k.b 8 3.b odd 2 1
576.2.k.b 8 48.i odd 4 1
1152.2.k.c 8 24.f even 2 1
1152.2.k.c 8 48.k even 4 1
1152.2.k.f 8 24.h odd 2 1
1152.2.k.f 8 48.i odd 4 1
3072.2.a.i 4 32.h odd 8 1
3072.2.a.n 4 32.g even 8 1
3072.2.a.o 4 32.g even 8 1
3072.2.a.t 4 32.h odd 8 1
3072.2.d.f 8 32.h odd 8 2
3072.2.d.i 8 32.g even 8 2
9216.2.a.x 4 96.p odd 8 1
9216.2.a.y 4 96.o even 8 1
9216.2.a.bn 4 96.p odd 8 1
9216.2.a.bo 4 96.o even 8 1

Hecke kernels

This newform subspace is the entire newspace S2new(192,[χ])S_{2}^{\mathrm{new}}(192, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T4+1)2 (T^{4} + 1)^{2} Copy content Toggle raw display
55 T816T5++64 T^{8} - 16 T^{5} + \cdots + 64 Copy content Toggle raw display
77 T8+32T6++16 T^{8} + 32 T^{6} + \cdots + 16 Copy content Toggle raw display
1111 T88T7++1024 T^{8} - 8 T^{7} + \cdots + 1024 Copy content Toggle raw display
1313 T864T5++16 T^{8} - 64 T^{5} + \cdots + 16 Copy content Toggle raw display
1717 (T432T2++16)2 (T^{4} - 32 T^{2} + \cdots + 16)^{2} Copy content Toggle raw display
1919 T88T7++256 T^{8} - 8 T^{7} + \cdots + 256 Copy content Toggle raw display
2323 (T2+8)4 (T^{2} + 8)^{4} Copy content Toggle raw display
2929 T8+16T7++61504 T^{8} + 16 T^{7} + \cdots + 61504 Copy content Toggle raw display
3131 (T4+12T3+28)2 (T^{4} + 12 T^{3} + \cdots - 28)^{2} Copy content Toggle raw display
3737 T8+16T7++1106704 T^{8} + 16 T^{7} + \cdots + 1106704 Copy content Toggle raw display
4141 T8+128T6++12544 T^{8} + 128 T^{6} + \cdots + 12544 Copy content Toggle raw display
4343 T88T7++12544 T^{8} - 8 T^{7} + \cdots + 12544 Copy content Toggle raw display
4747 (T28)4 (T^{2} - 8)^{4} Copy content Toggle raw display
5353 T816T7++18496 T^{8} - 16 T^{7} + \cdots + 18496 Copy content Toggle raw display
5959 (T2+8T+32)4 (T^{2} + 8 T + 32)^{4} Copy content Toggle raw display
6161 T816T7++1106704 T^{8} - 16 T^{7} + \cdots + 1106704 Copy content Toggle raw display
6767 T816T7++65536 T^{8} - 16 T^{7} + \cdots + 65536 Copy content Toggle raw display
7171 T8+128T6++4096 T^{8} + 128 T^{6} + \cdots + 4096 Copy content Toggle raw display
7373 T8+256T6++4096 T^{8} + 256 T^{6} + \cdots + 4096 Copy content Toggle raw display
7979 (T412T3+10108)2 (T^{4} - 12 T^{3} + \cdots - 10108)^{2} Copy content Toggle raw display
8383 T840T7++1024 T^{8} - 40 T^{7} + \cdots + 1024 Copy content Toggle raw display
8989 T8+464T6++3625216 T^{8} + 464 T^{6} + \cdots + 3625216 Copy content Toggle raw display
9797 (T4224T2++512)2 (T^{4} - 224 T^{2} + \cdots + 512)^{2} Copy content Toggle raw display
show more
show less