L(s) = 1 | + (0.707 − 0.707i)3-s + (1.74 + 1.74i)5-s + 2.55i·7-s − 1.00i·9-s + (−0.473 − 0.473i)11-s + (2.88 − 2.88i)13-s + 2.47·15-s − 6.44·17-s + (4.55 − 4.55i)19-s + (1.80 + 1.80i)21-s + 2.82i·23-s + 1.11i·25-s + (−0.707 − 0.707i)27-s + (−3.07 + 3.07i)29-s − 6.55·31-s + ⋯ |
L(s) = 1 | + (0.408 − 0.408i)3-s + (0.782 + 0.782i)5-s + 0.966i·7-s − 0.333i·9-s + (−0.142 − 0.142i)11-s + (0.800 − 0.800i)13-s + 0.638·15-s − 1.56·17-s + (1.04 − 1.04i)19-s + (0.394 + 0.394i)21-s + 0.589i·23-s + 0.223i·25-s + (−0.136 − 0.136i)27-s + (−0.571 + 0.571i)29-s − 1.17·31-s + ⋯ |
Λ(s)=(=(192s/2ΓC(s)L(s)(0.987−0.154i)Λ(2−s)
Λ(s)=(=(192s/2ΓC(s+1/2)L(s)(0.987−0.154i)Λ(1−s)
Degree: |
2 |
Conductor: |
192
= 26⋅3
|
Sign: |
0.987−0.154i
|
Analytic conductor: |
1.53312 |
Root analytic conductor: |
1.23819 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ192(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 192, ( :1/2), 0.987−0.154i)
|
Particular Values
L(1) |
≈ |
1.45441+0.113184i |
L(21) |
≈ |
1.45441+0.113184i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.707+0.707i)T |
good | 5 | 1+(−1.74−1.74i)T+5iT2 |
| 7 | 1−2.55iT−7T2 |
| 11 | 1+(0.473+0.473i)T+11iT2 |
| 13 | 1+(−2.88+2.88i)T−13iT2 |
| 17 | 1+6.44T+17T2 |
| 19 | 1+(−4.55+4.55i)T−19iT2 |
| 23 | 1−2.82iT−23T2 |
| 29 | 1+(3.07−3.07i)T−29iT2 |
| 31 | 1+6.55T+31T2 |
| 37 | 1+(2.72+2.72i)T+37iT2 |
| 41 | 1+0.788iT−41T2 |
| 43 | 1+(−0.389−0.389i)T+43iT2 |
| 47 | 1+2.82T+47T2 |
| 53 | 1+(2.57+2.57i)T+53iT2 |
| 59 | 1+(4+4i)T+59iT2 |
| 61 | 1+(4.38−4.38i)T−61iT2 |
| 67 | 1+(−2.11+2.11i)T−67iT2 |
| 71 | 1+5.11iT−71T2 |
| 73 | 1−14.7iT−73T2 |
| 79 | 1−6.31T+79T2 |
| 83 | 1+(0.641−0.641i)T−83iT2 |
| 89 | 1+6.31iT−89T2 |
| 97 | 1−12.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.83410427350285364867725261906, −11.46951032849543076039419169348, −10.71172509691700081387673533343, −9.379750123936178301407461322060, −8.720042663345123197762826967454, −7.35860026373326499674118121572, −6.31592504371531756545917644584, −5.34553772472817675156644250434, −3.25287641008141629079339590286, −2.14354634345310030434999238698,
1.75006188128523355498547120739, 3.77672130440115658931169717981, 4.82758846500107618268426864068, 6.17585035869479604888751508001, 7.47610642499185956298168912329, 8.750384106499168649395141159630, 9.441091881585600621519985659515, 10.43759532135277580242342675059, 11.38393810595461787892514443741, 12.78932271067515571647797913886