L(s) = 1 | + (0.707 − 0.707i)3-s + (1.74 + 1.74i)5-s + 2.55i·7-s − 1.00i·9-s + (−0.473 − 0.473i)11-s + (2.88 − 2.88i)13-s + 2.47·15-s − 6.44·17-s + (4.55 − 4.55i)19-s + (1.80 + 1.80i)21-s + 2.82i·23-s + 1.11i·25-s + (−0.707 − 0.707i)27-s + (−3.07 + 3.07i)29-s − 6.55·31-s + ⋯ |
L(s) = 1 | + (0.408 − 0.408i)3-s + (0.782 + 0.782i)5-s + 0.966i·7-s − 0.333i·9-s + (−0.142 − 0.142i)11-s + (0.800 − 0.800i)13-s + 0.638·15-s − 1.56·17-s + (1.04 − 1.04i)19-s + (0.394 + 0.394i)21-s + 0.589i·23-s + 0.223i·25-s + (−0.136 − 0.136i)27-s + (−0.571 + 0.571i)29-s − 1.17·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.987 - 0.154i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.987 - 0.154i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.45441 + 0.113184i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.45441 + 0.113184i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
good | 5 | \( 1 + (-1.74 - 1.74i)T + 5iT^{2} \) |
| 7 | \( 1 - 2.55iT - 7T^{2} \) |
| 11 | \( 1 + (0.473 + 0.473i)T + 11iT^{2} \) |
| 13 | \( 1 + (-2.88 + 2.88i)T - 13iT^{2} \) |
| 17 | \( 1 + 6.44T + 17T^{2} \) |
| 19 | \( 1 + (-4.55 + 4.55i)T - 19iT^{2} \) |
| 23 | \( 1 - 2.82iT - 23T^{2} \) |
| 29 | \( 1 + (3.07 - 3.07i)T - 29iT^{2} \) |
| 31 | \( 1 + 6.55T + 31T^{2} \) |
| 37 | \( 1 + (2.72 + 2.72i)T + 37iT^{2} \) |
| 41 | \( 1 + 0.788iT - 41T^{2} \) |
| 43 | \( 1 + (-0.389 - 0.389i)T + 43iT^{2} \) |
| 47 | \( 1 + 2.82T + 47T^{2} \) |
| 53 | \( 1 + (2.57 + 2.57i)T + 53iT^{2} \) |
| 59 | \( 1 + (4 + 4i)T + 59iT^{2} \) |
| 61 | \( 1 + (4.38 - 4.38i)T - 61iT^{2} \) |
| 67 | \( 1 + (-2.11 + 2.11i)T - 67iT^{2} \) |
| 71 | \( 1 + 5.11iT - 71T^{2} \) |
| 73 | \( 1 - 14.7iT - 73T^{2} \) |
| 79 | \( 1 - 6.31T + 79T^{2} \) |
| 83 | \( 1 + (0.641 - 0.641i)T - 83iT^{2} \) |
| 89 | \( 1 + 6.31iT - 89T^{2} \) |
| 97 | \( 1 - 12.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.83410427350285364867725261906, −11.46951032849543076039419169348, −10.71172509691700081387673533343, −9.379750123936178301407461322060, −8.720042663345123197762826967454, −7.35860026373326499674118121572, −6.31592504371531756545917644584, −5.34553772472817675156644250434, −3.25287641008141629079339590286, −2.14354634345310030434999238698,
1.75006188128523355498547120739, 3.77672130440115658931169717981, 4.82758846500107618268426864068, 6.17585035869479604888751508001, 7.47610642499185956298168912329, 8.750384106499168649395141159630, 9.441091881585600621519985659515, 10.43759532135277580242342675059, 11.38393810595461787892514443741, 12.78932271067515571647797913886