Properties

Label 2-192-1.1-c3-0-7
Degree $2$
Conductor $192$
Sign $-1$
Analytic cond. $11.3283$
Root an. cond. $3.36576$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 6·5-s + 16·7-s + 9·9-s + 12·11-s − 38·13-s + 18·15-s − 126·17-s + 20·19-s − 48·21-s − 168·23-s − 89·25-s − 27·27-s − 30·29-s + 88·31-s − 36·33-s − 96·35-s − 254·37-s + 114·39-s + 42·41-s − 52·43-s − 54·45-s + 96·47-s − 87·49-s + 378·51-s − 198·53-s − 72·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.536·5-s + 0.863·7-s + 1/3·9-s + 0.328·11-s − 0.810·13-s + 0.309·15-s − 1.79·17-s + 0.241·19-s − 0.498·21-s − 1.52·23-s − 0.711·25-s − 0.192·27-s − 0.192·29-s + 0.509·31-s − 0.189·33-s − 0.463·35-s − 1.12·37-s + 0.468·39-s + 0.159·41-s − 0.184·43-s − 0.178·45-s + 0.297·47-s − 0.253·49-s + 1.03·51-s − 0.513·53-s − 0.176·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(192\)    =    \(2^{6} \cdot 3\)
Sign: $-1$
Analytic conductor: \(11.3283\)
Root analytic conductor: \(3.36576\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 192,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
good5 \( 1 + 6 T + p^{3} T^{2} \)
7 \( 1 - 16 T + p^{3} T^{2} \)
11 \( 1 - 12 T + p^{3} T^{2} \)
13 \( 1 + 38 T + p^{3} T^{2} \)
17 \( 1 + 126 T + p^{3} T^{2} \)
19 \( 1 - 20 T + p^{3} T^{2} \)
23 \( 1 + 168 T + p^{3} T^{2} \)
29 \( 1 + 30 T + p^{3} T^{2} \)
31 \( 1 - 88 T + p^{3} T^{2} \)
37 \( 1 + 254 T + p^{3} T^{2} \)
41 \( 1 - 42 T + p^{3} T^{2} \)
43 \( 1 + 52 T + p^{3} T^{2} \)
47 \( 1 - 96 T + p^{3} T^{2} \)
53 \( 1 + 198 T + p^{3} T^{2} \)
59 \( 1 + 660 T + p^{3} T^{2} \)
61 \( 1 - 538 T + p^{3} T^{2} \)
67 \( 1 - 884 T + p^{3} T^{2} \)
71 \( 1 + 792 T + p^{3} T^{2} \)
73 \( 1 - 218 T + p^{3} T^{2} \)
79 \( 1 - 520 T + p^{3} T^{2} \)
83 \( 1 + 492 T + p^{3} T^{2} \)
89 \( 1 - 810 T + p^{3} T^{2} \)
97 \( 1 - 1154 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.63257493869608171188933507304, −10.83523076823632669724894007274, −9.687702124874222536838500009932, −8.437900006570885184688670562765, −7.46976092026210783734304435064, −6.35012562228816624310614608230, −4.97753441386872764896400612379, −4.05994039875513833613158376426, −1.99557943019966377695262793946, 0, 1.99557943019966377695262793946, 4.05994039875513833613158376426, 4.97753441386872764896400612379, 6.35012562228816624310614608230, 7.46976092026210783734304435064, 8.437900006570885184688670562765, 9.687702124874222536838500009932, 10.83523076823632669724894007274, 11.63257493869608171188933507304

Graph of the $Z$-function along the critical line