Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [192,4,Mod(1,192)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(192, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("192.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 192.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 6) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 192.4.a.c | 1 | |
3.b | odd | 2 | 1 | 576.4.a.r | 1 | ||
4.b | odd | 2 | 1 | 192.4.a.i | 1 | ||
8.b | even | 2 | 1 | 48.4.a.c | 1 | ||
8.d | odd | 2 | 1 | 6.4.a.a | ✓ | 1 | |
12.b | even | 2 | 1 | 576.4.a.q | 1 | ||
16.e | even | 4 | 2 | 768.4.d.c | 2 | ||
16.f | odd | 4 | 2 | 768.4.d.n | 2 | ||
24.f | even | 2 | 1 | 18.4.a.a | 1 | ||
24.h | odd | 2 | 1 | 144.4.a.c | 1 | ||
40.e | odd | 2 | 1 | 150.4.a.i | 1 | ||
40.f | even | 2 | 1 | 1200.4.a.b | 1 | ||
40.i | odd | 4 | 2 | 1200.4.f.j | 2 | ||
40.k | even | 4 | 2 | 150.4.c.d | 2 | ||
56.e | even | 2 | 1 | 294.4.a.e | 1 | ||
56.h | odd | 2 | 1 | 2352.4.a.e | 1 | ||
56.k | odd | 6 | 2 | 294.4.e.h | 2 | ||
56.m | even | 6 | 2 | 294.4.e.g | 2 | ||
72.l | even | 6 | 2 | 162.4.c.c | 2 | ||
72.p | odd | 6 | 2 | 162.4.c.f | 2 | ||
88.g | even | 2 | 1 | 726.4.a.f | 1 | ||
104.h | odd | 2 | 1 | 1014.4.a.g | 1 | ||
104.m | even | 4 | 2 | 1014.4.b.d | 2 | ||
120.m | even | 2 | 1 | 450.4.a.h | 1 | ||
120.q | odd | 4 | 2 | 450.4.c.e | 2 | ||
136.e | odd | 2 | 1 | 1734.4.a.d | 1 | ||
152.b | even | 2 | 1 | 2166.4.a.i | 1 | ||
168.e | odd | 2 | 1 | 882.4.a.n | 1 | ||
168.v | even | 6 | 2 | 882.4.g.i | 2 | ||
168.be | odd | 6 | 2 | 882.4.g.f | 2 | ||
264.p | odd | 2 | 1 | 2178.4.a.e | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
6.4.a.a | ✓ | 1 | 8.d | odd | 2 | 1 | |
18.4.a.a | 1 | 24.f | even | 2 | 1 | ||
48.4.a.c | 1 | 8.b | even | 2 | 1 | ||
144.4.a.c | 1 | 24.h | odd | 2 | 1 | ||
150.4.a.i | 1 | 40.e | odd | 2 | 1 | ||
150.4.c.d | 2 | 40.k | even | 4 | 2 | ||
162.4.c.c | 2 | 72.l | even | 6 | 2 | ||
162.4.c.f | 2 | 72.p | odd | 6 | 2 | ||
192.4.a.c | 1 | 1.a | even | 1 | 1 | trivial | |
192.4.a.i | 1 | 4.b | odd | 2 | 1 | ||
294.4.a.e | 1 | 56.e | even | 2 | 1 | ||
294.4.e.g | 2 | 56.m | even | 6 | 2 | ||
294.4.e.h | 2 | 56.k | odd | 6 | 2 | ||
450.4.a.h | 1 | 120.m | even | 2 | 1 | ||
450.4.c.e | 2 | 120.q | odd | 4 | 2 | ||
576.4.a.q | 1 | 12.b | even | 2 | 1 | ||
576.4.a.r | 1 | 3.b | odd | 2 | 1 | ||
726.4.a.f | 1 | 88.g | even | 2 | 1 | ||
768.4.d.c | 2 | 16.e | even | 4 | 2 | ||
768.4.d.n | 2 | 16.f | odd | 4 | 2 | ||
882.4.a.n | 1 | 168.e | odd | 2 | 1 | ||
882.4.g.f | 2 | 168.be | odd | 6 | 2 | ||
882.4.g.i | 2 | 168.v | even | 6 | 2 | ||
1014.4.a.g | 1 | 104.h | odd | 2 | 1 | ||
1014.4.b.d | 2 | 104.m | even | 4 | 2 | ||
1200.4.a.b | 1 | 40.f | even | 2 | 1 | ||
1200.4.f.j | 2 | 40.i | odd | 4 | 2 | ||
1734.4.a.d | 1 | 136.e | odd | 2 | 1 | ||
2166.4.a.i | 1 | 152.b | even | 2 | 1 | ||
2178.4.a.e | 1 | 264.p | odd | 2 | 1 | ||
2352.4.a.e | 1 | 56.h | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|