L(s) = 1 | + 1.73·3-s + (−1.73 + 1.41i)5-s − 2·7-s + 2.99·9-s − 5.65i·11-s + (−2.99 + 2.44i)15-s − 3.46·21-s + (0.999 − 4.89i)25-s + 5.19·27-s + 10.3·29-s − 4.89i·31-s − 9.79i·33-s + (3.46 − 2.82i)35-s + (−5.19 + 4.24i)45-s − 3·49-s + ⋯ |
L(s) = 1 | + 1.00·3-s + (−0.774 + 0.632i)5-s − 0.755·7-s + 0.999·9-s − 1.70i·11-s + (−0.774 + 0.632i)15-s − 0.755·21-s + (0.199 − 0.979i)25-s + 1.00·27-s + 1.92·29-s − 0.879i·31-s − 1.70i·33-s + (0.585 − 0.478i)35-s + (−0.774 + 0.632i)45-s − 0.428·49-s + ⋯ |
Λ(s)=(=(1920s/2ΓC(s)L(s)(0.632+0.774i)Λ(2−s)
Λ(s)=(=(1920s/2ΓC(s+1/2)L(s)(0.632+0.774i)Λ(1−s)
Degree: |
2 |
Conductor: |
1920
= 27⋅3⋅5
|
Sign: |
0.632+0.774i
|
Analytic conductor: |
15.3312 |
Root analytic conductor: |
3.91551 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1920(959,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1920, ( :1/2), 0.632+0.774i)
|
Particular Values
L(1) |
≈ |
1.843688713 |
L(21) |
≈ |
1.843688713 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−1.73T |
| 5 | 1+(1.73−1.41i)T |
good | 7 | 1+2T+7T2 |
| 11 | 1+5.65iT−11T2 |
| 13 | 1+13T2 |
| 17 | 1+17T2 |
| 19 | 1+19T2 |
| 23 | 1−23T2 |
| 29 | 1−10.3T+29T2 |
| 31 | 1+4.89iT−31T2 |
| 37 | 1+37T2 |
| 41 | 1−41T2 |
| 43 | 1−43T2 |
| 47 | 1−47T2 |
| 53 | 1+14.1iT−53T2 |
| 59 | 1+11.3iT−59T2 |
| 61 | 1−61T2 |
| 67 | 1−67T2 |
| 71 | 1+71T2 |
| 73 | 1−9.79iT−73T2 |
| 79 | 1+14.6iT−79T2 |
| 83 | 1−17.3T+83T2 |
| 89 | 1−89T2 |
| 97 | 1−19.5iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.920549235071937807253042297190, −8.273770961203366508379190840850, −7.75742768395748844069041936062, −6.66614943306303814469330464034, −6.26413560208654578874956689615, −4.85305643680807661590647879360, −3.68293288472333325949891105179, −3.30229561026618056145331876431, −2.44700592499417615241129398976, −0.65038828366471350638881262615,
1.26320998212036097764306542801, 2.51932474252877980214338675371, 3.43903398399164501404732018528, 4.40793185243720684648719215900, 4.86342543598987039630628157073, 6.38840250001930732454950530171, 7.20128926716196058554084091440, 7.70985864118406660735799913545, 8.640769820100521849704441824558, 9.166978431314989588625088730227