Properties

Label 1920.2.m.k
Level $1920$
Weight $2$
Character orbit 1920.m
Analytic conductor $15.331$
Analytic rank $0$
Dimension $4$
CM discriminant -24
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(959,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.959");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + ( - \beta_{2} + \beta_1) q^{5} - 2 q^{7} + 3 q^{9} - 4 \beta_1 q^{11} + (\beta_{3} - 3) q^{15} - 2 \beta_{2} q^{21} + ( - 2 \beta_{3} + 1) q^{25} + 3 \beta_{2} q^{27} + 6 \beta_{2} q^{29}+ \cdots - 12 \beta_1 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{7} + 12 q^{9} - 12 q^{15} + 4 q^{25} - 12 q^{49} + 32 q^{55} - 24 q^{63} + 36 q^{81} + 72 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 4x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} + 3\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 5\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -3\beta_{3} + 5\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
959.1
1.93185i
1.93185i
0.517638i
0.517638i
0 −1.73205 0 1.73205 1.41421i 0 −2.00000 0 3.00000 0
959.2 0 −1.73205 0 1.73205 + 1.41421i 0 −2.00000 0 3.00000 0
959.3 0 1.73205 0 −1.73205 1.41421i 0 −2.00000 0 3.00000 0
959.4 0 1.73205 0 −1.73205 + 1.41421i 0 −2.00000 0 3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by \(\Q(\sqrt{-6}) \)
3.b odd 2 1 inner
8.b even 2 1 inner
20.d odd 2 1 inner
40.e odd 2 1 inner
60.h even 2 1 inner
120.m even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1920.2.m.k 4
3.b odd 2 1 inner 1920.2.m.k 4
4.b odd 2 1 1920.2.m.l yes 4
5.b even 2 1 1920.2.m.l yes 4
8.b even 2 1 inner 1920.2.m.k 4
8.d odd 2 1 1920.2.m.l yes 4
12.b even 2 1 1920.2.m.l yes 4
15.d odd 2 1 1920.2.m.l yes 4
20.d odd 2 1 inner 1920.2.m.k 4
24.f even 2 1 1920.2.m.l yes 4
24.h odd 2 1 CM 1920.2.m.k 4
40.e odd 2 1 inner 1920.2.m.k 4
40.f even 2 1 1920.2.m.l yes 4
60.h even 2 1 inner 1920.2.m.k 4
120.i odd 2 1 1920.2.m.l yes 4
120.m even 2 1 inner 1920.2.m.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1920.2.m.k 4 1.a even 1 1 trivial
1920.2.m.k 4 3.b odd 2 1 inner
1920.2.m.k 4 8.b even 2 1 inner
1920.2.m.k 4 20.d odd 2 1 inner
1920.2.m.k 4 24.h odd 2 1 CM
1920.2.m.k 4 40.e odd 2 1 inner
1920.2.m.k 4 60.h even 2 1 inner
1920.2.m.k 4 120.m even 2 1 inner
1920.2.m.l yes 4 4.b odd 2 1
1920.2.m.l yes 4 5.b even 2 1
1920.2.m.l yes 4 8.d odd 2 1
1920.2.m.l yes 4 12.b even 2 1
1920.2.m.l yes 4 15.d odd 2 1
1920.2.m.l yes 4 24.f even 2 1
1920.2.m.l yes 4 40.f even 2 1
1920.2.m.l yes 4 120.i odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1920, [\chi])\):

\( T_{7} + 2 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display
\( T_{19} \) Copy content Toggle raw display
\( T_{29}^{2} - 108 \) Copy content Toggle raw display
\( T_{83}^{2} - 300 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 2T^{2} + 25 \) Copy content Toggle raw display
$7$ \( (T + 2)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} - 108)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 24)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 200)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 128)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 96)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 216)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 300)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 384)^{2} \) Copy content Toggle raw display
show more
show less