Properties

Label 1920.2.m.k
Level 19201920
Weight 22
Character orbit 1920.m
Analytic conductor 15.33115.331
Analytic rank 00
Dimension 44
CM discriminant -24
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(959,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.959");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1920=2735 1920 = 2^{7} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1920.m (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 15.331277188115.3312771881
Analytic rank: 00
Dimension: 44
Coefficient field: Q(2,3)\Q(\sqrt{-2}, \sqrt{3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+4x2+1 x^{4} + 4x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q3+(β2+β1)q52q7+3q94β1q11+(β33)q152β2q21+(2β3+1)q25+3β2q27+6β2q29+12β1q99+O(q100) q + \beta_{2} q^{3} + ( - \beta_{2} + \beta_1) q^{5} - 2 q^{7} + 3 q^{9} - 4 \beta_1 q^{11} + (\beta_{3} - 3) q^{15} - 2 \beta_{2} q^{21} + ( - 2 \beta_{3} + 1) q^{25} + 3 \beta_{2} q^{27} + 6 \beta_{2} q^{29}+ \cdots - 12 \beta_1 q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q8q7+12q912q15+4q2512q49+32q5524q63+36q81+72q87+O(q100) 4 q - 8 q^{7} + 12 q^{9} - 12 q^{15} + 4 q^{25} - 12 q^{49} + 32 q^{55} - 24 q^{63} + 36 q^{81} + 72 q^{87}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+4x2+1 x^{4} + 4x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== ν3+3ν \nu^{3} + 3\nu Copy content Toggle raw display
β2\beta_{2}== ν2+2 \nu^{2} + 2 Copy content Toggle raw display
β3\beta_{3}== ν3+5ν \nu^{3} + 5\nu Copy content Toggle raw display
ν\nu== (β3β1)/2 ( \beta_{3} - \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== β22 \beta_{2} - 2 Copy content Toggle raw display
ν3\nu^{3}== (3β3+5β1)/2 ( -3\beta_{3} + 5\beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1920Z)×\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times.

nn 511511 641641 901901 15371537
χ(n)\chi(n) 1-1 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
959.1
1.93185i
1.93185i
0.517638i
0.517638i
0 −1.73205 0 1.73205 1.41421i 0 −2.00000 0 3.00000 0
959.2 0 −1.73205 0 1.73205 + 1.41421i 0 −2.00000 0 3.00000 0
959.3 0 1.73205 0 −1.73205 1.41421i 0 −2.00000 0 3.00000 0
959.4 0 1.73205 0 −1.73205 + 1.41421i 0 −2.00000 0 3.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by Q(6)\Q(\sqrt{-6})
3.b odd 2 1 inner
8.b even 2 1 inner
20.d odd 2 1 inner
40.e odd 2 1 inner
60.h even 2 1 inner
120.m even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1920.2.m.k 4
3.b odd 2 1 inner 1920.2.m.k 4
4.b odd 2 1 1920.2.m.l yes 4
5.b even 2 1 1920.2.m.l yes 4
8.b even 2 1 inner 1920.2.m.k 4
8.d odd 2 1 1920.2.m.l yes 4
12.b even 2 1 1920.2.m.l yes 4
15.d odd 2 1 1920.2.m.l yes 4
20.d odd 2 1 inner 1920.2.m.k 4
24.f even 2 1 1920.2.m.l yes 4
24.h odd 2 1 CM 1920.2.m.k 4
40.e odd 2 1 inner 1920.2.m.k 4
40.f even 2 1 1920.2.m.l yes 4
60.h even 2 1 inner 1920.2.m.k 4
120.i odd 2 1 1920.2.m.l yes 4
120.m even 2 1 inner 1920.2.m.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1920.2.m.k 4 1.a even 1 1 trivial
1920.2.m.k 4 3.b odd 2 1 inner
1920.2.m.k 4 8.b even 2 1 inner
1920.2.m.k 4 20.d odd 2 1 inner
1920.2.m.k 4 24.h odd 2 1 CM
1920.2.m.k 4 40.e odd 2 1 inner
1920.2.m.k 4 60.h even 2 1 inner
1920.2.m.k 4 120.m even 2 1 inner
1920.2.m.l yes 4 4.b odd 2 1
1920.2.m.l yes 4 5.b even 2 1
1920.2.m.l yes 4 8.d odd 2 1
1920.2.m.l yes 4 12.b even 2 1
1920.2.m.l yes 4 15.d odd 2 1
1920.2.m.l yes 4 24.f even 2 1
1920.2.m.l yes 4 40.f even 2 1
1920.2.m.l yes 4 120.i odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1920,[χ])S_{2}^{\mathrm{new}}(1920, [\chi]):

T7+2 T_{7} + 2 Copy content Toggle raw display
T13 T_{13} Copy content Toggle raw display
T17 T_{17} Copy content Toggle raw display
T19 T_{19} Copy content Toggle raw display
T292108 T_{29}^{2} - 108 Copy content Toggle raw display
T832300 T_{83}^{2} - 300 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T23)2 (T^{2} - 3)^{2} Copy content Toggle raw display
55 T42T2+25 T^{4} - 2T^{2} + 25 Copy content Toggle raw display
77 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
1111 (T2+32)2 (T^{2} + 32)^{2} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T4 T^{4} Copy content Toggle raw display
2929 (T2108)2 (T^{2} - 108)^{2} Copy content Toggle raw display
3131 (T2+24)2 (T^{2} + 24)^{2} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 (T2+200)2 (T^{2} + 200)^{2} Copy content Toggle raw display
5959 (T2+128)2 (T^{2} + 128)^{2} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 (T2+96)2 (T^{2} + 96)^{2} Copy content Toggle raw display
7979 (T2+216)2 (T^{2} + 216)^{2} Copy content Toggle raw display
8383 (T2300)2 (T^{2} - 300)^{2} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 (T2+384)2 (T^{2} + 384)^{2} Copy content Toggle raw display
show more
show less