Properties

Label 2-1920-80.27-c1-0-18
Degree 22
Conductor 19201920
Sign 0.3010.953i-0.301 - 0.953i
Analytic cond. 15.331215.3312
Root an. cond. 3.915513.91551
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + (−0.311 + 2.21i)5-s + (1.96 + 1.96i)7-s + 9-s + (0.870 − 0.870i)11-s + 5.88i·13-s + (−0.311 + 2.21i)15-s + (2.69 + 2.69i)17-s + (−2.40 + 2.40i)19-s + (1.96 + 1.96i)21-s + (−2.63 + 2.63i)23-s + (−4.80 − 1.38i)25-s + 27-s + (−7.43 − 7.43i)29-s − 7.72i·31-s + ⋯
L(s)  = 1  + 0.577·3-s + (−0.139 + 0.990i)5-s + (0.743 + 0.743i)7-s + 0.333·9-s + (0.262 − 0.262i)11-s + 1.63i·13-s + (−0.0805 + 0.571i)15-s + (0.653 + 0.653i)17-s + (−0.550 + 0.550i)19-s + (0.429 + 0.429i)21-s + (−0.550 + 0.550i)23-s + (−0.961 − 0.276i)25-s + 0.192·27-s + (−1.38 − 1.38i)29-s − 1.38i·31-s + ⋯

Functional equation

Λ(s)=(1920s/2ΓC(s)L(s)=((0.3010.953i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.301 - 0.953i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1920s/2ΓC(s+1/2)L(s)=((0.3010.953i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.301 - 0.953i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 19201920    =    27352^{7} \cdot 3 \cdot 5
Sign: 0.3010.953i-0.301 - 0.953i
Analytic conductor: 15.331215.3312
Root analytic conductor: 3.915513.91551
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1920(1567,)\chi_{1920} (1567, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1920, ( :1/2), 0.3010.953i)(2,\ 1920,\ (\ :1/2),\ -0.301 - 0.953i)

Particular Values

L(1)L(1) \approx 2.0825839962.082583996
L(12)L(\frac12) \approx 2.0825839962.082583996
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1T 1 - T
5 1+(0.3112.21i)T 1 + (0.311 - 2.21i)T
good7 1+(1.961.96i)T+7iT2 1 + (-1.96 - 1.96i)T + 7iT^{2}
11 1+(0.870+0.870i)T11iT2 1 + (-0.870 + 0.870i)T - 11iT^{2}
13 15.88iT13T2 1 - 5.88iT - 13T^{2}
17 1+(2.692.69i)T+17iT2 1 + (-2.69 - 2.69i)T + 17iT^{2}
19 1+(2.402.40i)T19iT2 1 + (2.40 - 2.40i)T - 19iT^{2}
23 1+(2.632.63i)T23iT2 1 + (2.63 - 2.63i)T - 23iT^{2}
29 1+(7.43+7.43i)T+29iT2 1 + (7.43 + 7.43i)T + 29iT^{2}
31 1+7.72iT31T2 1 + 7.72iT - 31T^{2}
37 14.49iT37T2 1 - 4.49iT - 37T^{2}
41 1+4.84iT41T2 1 + 4.84iT - 41T^{2}
43 10.461iT43T2 1 - 0.461iT - 43T^{2}
47 1+(4.66+4.66i)T47iT2 1 + (-4.66 + 4.66i)T - 47iT^{2}
53 12.41T+53T2 1 - 2.41T + 53T^{2}
59 1+(6.476.47i)T+59iT2 1 + (-6.47 - 6.47i)T + 59iT^{2}
61 1+(8.508.50i)T61iT2 1 + (8.50 - 8.50i)T - 61iT^{2}
67 16.40iT67T2 1 - 6.40iT - 67T^{2}
71 113.3T+71T2 1 - 13.3T + 71T^{2}
73 1+(1.62+1.62i)T+73iT2 1 + (1.62 + 1.62i)T + 73iT^{2}
79 14.14T+79T2 1 - 4.14T + 79T^{2}
83 1+0.241T+83T2 1 + 0.241T + 83T^{2}
89 12.86T+89T2 1 - 2.86T + 89T^{2}
97 1+(3.183.18i)T+97iT2 1 + (-3.18 - 3.18i)T + 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.420032613571115075297725589612, −8.593748266414481993129357610866, −7.899969414326850085837943906881, −7.22056773614331699060815225508, −6.22328879621593566472550349639, −5.64238559063406775515756560508, −4.14237384624075078798192280513, −3.77945467851532103676629720558, −2.34800771790981318951507319961, −1.84052127433078041385779762723, 0.70055403012347426823643630679, 1.73672441708686397074711775198, 3.10544295981811937155537504124, 4.00920495518528164198760317117, 4.92126303355386558689257256388, 5.45439514012007955592058482620, 6.80309985910141405161512634116, 7.74402341644673368911850434108, 8.031039859284266391062541763642, 8.942204768457092201738379497636

Graph of the ZZ-function along the critical line