L(s) = 1 | + 3-s + (−0.311 + 2.21i)5-s + (1.96 + 1.96i)7-s + 9-s + (0.870 − 0.870i)11-s + 5.88i·13-s + (−0.311 + 2.21i)15-s + (2.69 + 2.69i)17-s + (−2.40 + 2.40i)19-s + (1.96 + 1.96i)21-s + (−2.63 + 2.63i)23-s + (−4.80 − 1.38i)25-s + 27-s + (−7.43 − 7.43i)29-s − 7.72i·31-s + ⋯ |
L(s) = 1 | + 0.577·3-s + (−0.139 + 0.990i)5-s + (0.743 + 0.743i)7-s + 0.333·9-s + (0.262 − 0.262i)11-s + 1.63i·13-s + (−0.0805 + 0.571i)15-s + (0.653 + 0.653i)17-s + (−0.550 + 0.550i)19-s + (0.429 + 0.429i)21-s + (−0.550 + 0.550i)23-s + (−0.961 − 0.276i)25-s + 0.192·27-s + (−1.38 − 1.38i)29-s − 1.38i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.301 - 0.953i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.301 - 0.953i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.082583996\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.082583996\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (0.311 - 2.21i)T \) |
good | 7 | \( 1 + (-1.96 - 1.96i)T + 7iT^{2} \) |
| 11 | \( 1 + (-0.870 + 0.870i)T - 11iT^{2} \) |
| 13 | \( 1 - 5.88iT - 13T^{2} \) |
| 17 | \( 1 + (-2.69 - 2.69i)T + 17iT^{2} \) |
| 19 | \( 1 + (2.40 - 2.40i)T - 19iT^{2} \) |
| 23 | \( 1 + (2.63 - 2.63i)T - 23iT^{2} \) |
| 29 | \( 1 + (7.43 + 7.43i)T + 29iT^{2} \) |
| 31 | \( 1 + 7.72iT - 31T^{2} \) |
| 37 | \( 1 - 4.49iT - 37T^{2} \) |
| 41 | \( 1 + 4.84iT - 41T^{2} \) |
| 43 | \( 1 - 0.461iT - 43T^{2} \) |
| 47 | \( 1 + (-4.66 + 4.66i)T - 47iT^{2} \) |
| 53 | \( 1 - 2.41T + 53T^{2} \) |
| 59 | \( 1 + (-6.47 - 6.47i)T + 59iT^{2} \) |
| 61 | \( 1 + (8.50 - 8.50i)T - 61iT^{2} \) |
| 67 | \( 1 - 6.40iT - 67T^{2} \) |
| 71 | \( 1 - 13.3T + 71T^{2} \) |
| 73 | \( 1 + (1.62 + 1.62i)T + 73iT^{2} \) |
| 79 | \( 1 - 4.14T + 79T^{2} \) |
| 83 | \( 1 + 0.241T + 83T^{2} \) |
| 89 | \( 1 - 2.86T + 89T^{2} \) |
| 97 | \( 1 + (-3.18 - 3.18i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.420032613571115075297725589612, −8.593748266414481993129357610866, −7.899969414326850085837943906881, −7.22056773614331699060815225508, −6.22328879621593566472550349639, −5.64238559063406775515756560508, −4.14237384624075078798192280513, −3.77945467851532103676629720558, −2.34800771790981318951507319961, −1.84052127433078041385779762723,
0.70055403012347426823643630679, 1.73672441708686397074711775198, 3.10544295981811937155537504124, 4.00920495518528164198760317117, 4.92126303355386558689257256388, 5.45439514012007955592058482620, 6.80309985910141405161512634116, 7.74402341644673368911850434108, 8.031039859284266391062541763642, 8.942204768457092201738379497636