Properties

Label 1920.2.y.j.1567.4
Level $1920$
Weight $2$
Character 1920.1567
Analytic conductor $15.331$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(223,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.223");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.y (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 14 x^{14} - 10 x^{13} - 26 x^{12} + 78 x^{11} - 66 x^{10} - 74 x^{9} + 233 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1567.4
Root \(1.38194 + 0.300388i\) of defining polynomial
Character \(\chi\) \(=\) 1920.1567
Dual form 1920.2.y.j.223.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +(-0.311968 + 2.21420i) q^{5} +(1.96597 + 1.96597i) q^{7} +1.00000 q^{9} +(0.870396 - 0.870396i) q^{11} +5.88276i q^{13} +(-0.311968 + 2.21420i) q^{15} +(2.69398 + 2.69398i) q^{17} +(-2.40037 + 2.40037i) q^{19} +(1.96597 + 1.96597i) q^{21} +(-2.63907 + 2.63907i) q^{23} +(-4.80535 - 1.38152i) q^{25} +1.00000 q^{27} +(-7.43646 - 7.43646i) q^{29} -7.72239i q^{31} +(0.870396 - 0.870396i) q^{33} +(-4.96636 + 3.73972i) q^{35} +4.49007i q^{37} +5.88276i q^{39} -4.84873i q^{41} +0.461098i q^{43} +(-0.311968 + 2.21420i) q^{45} +(4.66693 - 4.66693i) q^{47} +0.730041i q^{49} +(2.69398 + 2.69398i) q^{51} +2.41272 q^{53} +(1.65569 + 2.19876i) q^{55} +(-2.40037 + 2.40037i) q^{57} +(6.47458 + 6.47458i) q^{59} +(-8.50808 + 8.50808i) q^{61} +(1.96597 + 1.96597i) q^{63} +(-13.0256 - 1.83523i) q^{65} +6.40870i q^{67} +(-2.63907 + 2.63907i) q^{69} +13.3214 q^{71} +(-1.62933 - 1.62933i) q^{73} +(-4.80535 - 1.38152i) q^{75} +3.42234 q^{77} +4.14482 q^{79} +1.00000 q^{81} -0.241277 q^{83} +(-6.80545 + 5.12458i) q^{85} +(-7.43646 - 7.43646i) q^{87} +2.86287 q^{89} +(-11.5653 + 11.5653i) q^{91} -7.72239i q^{93} +(-4.56605 - 6.06373i) q^{95} +(3.18909 + 3.18909i) q^{97} +(0.870396 - 0.870396i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{3} + 4 q^{5} + 4 q^{7} + 16 q^{9} + 4 q^{15} - 8 q^{17} + 8 q^{19} + 4 q^{21} + 32 q^{25} + 16 q^{27} - 12 q^{29} - 20 q^{35} + 4 q^{45} + 32 q^{47} - 8 q^{51} - 16 q^{53} + 4 q^{55} + 8 q^{57}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −0.311968 + 2.21420i −0.139516 + 0.990220i
\(6\) 0 0
\(7\) 1.96597 + 1.96597i 0.743065 + 0.743065i 0.973167 0.230101i \(-0.0739058\pi\)
−0.230101 + 0.973167i \(0.573906\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0.870396 0.870396i 0.262434 0.262434i −0.563608 0.826042i \(-0.690587\pi\)
0.826042 + 0.563608i \(0.190587\pi\)
\(12\) 0 0
\(13\) 5.88276i 1.63158i 0.578345 + 0.815792i \(0.303699\pi\)
−0.578345 + 0.815792i \(0.696301\pi\)
\(14\) 0 0
\(15\) −0.311968 + 2.21420i −0.0805497 + 0.571704i
\(16\) 0 0
\(17\) 2.69398 + 2.69398i 0.653387 + 0.653387i 0.953807 0.300420i \(-0.0971268\pi\)
−0.300420 + 0.953807i \(0.597127\pi\)
\(18\) 0 0
\(19\) −2.40037 + 2.40037i −0.550682 + 0.550682i −0.926638 0.375956i \(-0.877314\pi\)
0.375956 + 0.926638i \(0.377314\pi\)
\(20\) 0 0
\(21\) 1.96597 + 1.96597i 0.429009 + 0.429009i
\(22\) 0 0
\(23\) −2.63907 + 2.63907i −0.550284 + 0.550284i −0.926523 0.376239i \(-0.877217\pi\)
0.376239 + 0.926523i \(0.377217\pi\)
\(24\) 0 0
\(25\) −4.80535 1.38152i −0.961070 0.276303i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −7.43646 7.43646i −1.38092 1.38092i −0.842996 0.537919i \(-0.819210\pi\)
−0.537919 0.842996i \(-0.680790\pi\)
\(30\) 0 0
\(31\) 7.72239i 1.38698i −0.720465 0.693491i \(-0.756072\pi\)
0.720465 0.693491i \(-0.243928\pi\)
\(32\) 0 0
\(33\) 0.870396 0.870396i 0.151516 0.151516i
\(34\) 0 0
\(35\) −4.96636 + 3.73972i −0.839467 + 0.632128i
\(36\) 0 0
\(37\) 4.49007i 0.738163i 0.929397 + 0.369081i \(0.120328\pi\)
−0.929397 + 0.369081i \(0.879672\pi\)
\(38\) 0 0
\(39\) 5.88276i 0.941996i
\(40\) 0 0
\(41\) 4.84873i 0.757244i −0.925551 0.378622i \(-0.876398\pi\)
0.925551 0.378622i \(-0.123602\pi\)
\(42\) 0 0
\(43\) 0.461098i 0.0703168i 0.999382 + 0.0351584i \(0.0111936\pi\)
−0.999382 + 0.0351584i \(0.988806\pi\)
\(44\) 0 0
\(45\) −0.311968 + 2.21420i −0.0465054 + 0.330073i
\(46\) 0 0
\(47\) 4.66693 4.66693i 0.680742 0.680742i −0.279425 0.960167i \(-0.590144\pi\)
0.960167 + 0.279425i \(0.0901439\pi\)
\(48\) 0 0
\(49\) 0.730041i 0.104292i
\(50\) 0 0
\(51\) 2.69398 + 2.69398i 0.377233 + 0.377233i
\(52\) 0 0
\(53\) 2.41272 0.331413 0.165706 0.986175i \(-0.447010\pi\)
0.165706 + 0.986175i \(0.447010\pi\)
\(54\) 0 0
\(55\) 1.65569 + 2.19876i 0.223254 + 0.296481i
\(56\) 0 0
\(57\) −2.40037 + 2.40037i −0.317936 + 0.317936i
\(58\) 0 0
\(59\) 6.47458 + 6.47458i 0.842919 + 0.842919i 0.989238 0.146318i \(-0.0467424\pi\)
−0.146318 + 0.989238i \(0.546742\pi\)
\(60\) 0 0
\(61\) −8.50808 + 8.50808i −1.08935 + 1.08935i −0.0937523 + 0.995596i \(0.529886\pi\)
−0.995596 + 0.0937523i \(0.970114\pi\)
\(62\) 0 0
\(63\) 1.96597 + 1.96597i 0.247688 + 0.247688i
\(64\) 0 0
\(65\) −13.0256 1.83523i −1.61563 0.227632i
\(66\) 0 0
\(67\) 6.40870i 0.782948i 0.920189 + 0.391474i \(0.128035\pi\)
−0.920189 + 0.391474i \(0.871965\pi\)
\(68\) 0 0
\(69\) −2.63907 + 2.63907i −0.317706 + 0.317706i
\(70\) 0 0
\(71\) 13.3214 1.58096 0.790482 0.612486i \(-0.209830\pi\)
0.790482 + 0.612486i \(0.209830\pi\)
\(72\) 0 0
\(73\) −1.62933 1.62933i −0.190699 0.190699i 0.605299 0.795998i \(-0.293053\pi\)
−0.795998 + 0.605299i \(0.793053\pi\)
\(74\) 0 0
\(75\) −4.80535 1.38152i −0.554874 0.159524i
\(76\) 0 0
\(77\) 3.42234 0.390011
\(78\) 0 0
\(79\) 4.14482 0.466328 0.233164 0.972437i \(-0.425092\pi\)
0.233164 + 0.972437i \(0.425092\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −0.241277 −0.0264836 −0.0132418 0.999912i \(-0.504215\pi\)
−0.0132418 + 0.999912i \(0.504215\pi\)
\(84\) 0 0
\(85\) −6.80545 + 5.12458i −0.738155 + 0.555839i
\(86\) 0 0
\(87\) −7.43646 7.43646i −0.797272 0.797272i
\(88\) 0 0
\(89\) 2.86287 0.303464 0.151732 0.988422i \(-0.451515\pi\)
0.151732 + 0.988422i \(0.451515\pi\)
\(90\) 0 0
\(91\) −11.5653 + 11.5653i −1.21237 + 1.21237i
\(92\) 0 0
\(93\) 7.72239i 0.800775i
\(94\) 0 0
\(95\) −4.56605 6.06373i −0.468467 0.622125i
\(96\) 0 0
\(97\) 3.18909 + 3.18909i 0.323803 + 0.323803i 0.850224 0.526421i \(-0.176466\pi\)
−0.526421 + 0.850224i \(0.676466\pi\)
\(98\) 0 0
\(99\) 0.870396 0.870396i 0.0874781 0.0874781i
\(100\) 0 0
\(101\) −6.90372 6.90372i −0.686946 0.686946i 0.274610 0.961556i \(-0.411451\pi\)
−0.961556 + 0.274610i \(0.911451\pi\)
\(102\) 0 0
\(103\) −4.09832 + 4.09832i −0.403819 + 0.403819i −0.879577 0.475757i \(-0.842174\pi\)
0.475757 + 0.879577i \(0.342174\pi\)
\(104\) 0 0
\(105\) −4.96636 + 3.73972i −0.484667 + 0.364959i
\(106\) 0 0
\(107\) 10.0579 0.972333 0.486166 0.873866i \(-0.338395\pi\)
0.486166 + 0.873866i \(0.338395\pi\)
\(108\) 0 0
\(109\) −11.2123 11.2123i −1.07394 1.07394i −0.997039 0.0769025i \(-0.975497\pi\)
−0.0769025 0.997039i \(-0.524503\pi\)
\(110\) 0 0
\(111\) 4.49007i 0.426178i
\(112\) 0 0
\(113\) −0.420404 + 0.420404i −0.0395483 + 0.0395483i −0.726604 0.687056i \(-0.758903\pi\)
0.687056 + 0.726604i \(0.258903\pi\)
\(114\) 0 0
\(115\) −5.02012 6.66672i −0.468128 0.621675i
\(116\) 0 0
\(117\) 5.88276i 0.543861i
\(118\) 0 0
\(119\) 10.5926i 0.971018i
\(120\) 0 0
\(121\) 9.48482i 0.862257i
\(122\) 0 0
\(123\) 4.84873i 0.437195i
\(124\) 0 0
\(125\) 4.55807 10.2090i 0.407686 0.913122i
\(126\) 0 0
\(127\) −12.1223 + 12.1223i −1.07568 + 1.07568i −0.0787895 + 0.996891i \(0.525106\pi\)
−0.996891 + 0.0787895i \(0.974894\pi\)
\(128\) 0 0
\(129\) 0.461098i 0.0405974i
\(130\) 0 0
\(131\) 9.02309 + 9.02309i 0.788351 + 0.788351i 0.981224 0.192873i \(-0.0617804\pi\)
−0.192873 + 0.981224i \(0.561780\pi\)
\(132\) 0 0
\(133\) −9.43808 −0.818385
\(134\) 0 0
\(135\) −0.311968 + 2.21420i −0.0268499 + 0.190568i
\(136\) 0 0
\(137\) −8.12950 + 8.12950i −0.694550 + 0.694550i −0.963230 0.268679i \(-0.913413\pi\)
0.268679 + 0.963230i \(0.413413\pi\)
\(138\) 0 0
\(139\) 2.98593 + 2.98593i 0.253263 + 0.253263i 0.822307 0.569044i \(-0.192687\pi\)
−0.569044 + 0.822307i \(0.692687\pi\)
\(140\) 0 0
\(141\) 4.66693 4.66693i 0.393027 0.393027i
\(142\) 0 0
\(143\) 5.12033 + 5.12033i 0.428184 + 0.428184i
\(144\) 0 0
\(145\) 18.7857 14.1459i 1.56007 1.17475i
\(146\) 0 0
\(147\) 0.730041i 0.0602128i
\(148\) 0 0
\(149\) 0.994977 0.994977i 0.0815117 0.0815117i −0.665175 0.746687i \(-0.731643\pi\)
0.746687 + 0.665175i \(0.231643\pi\)
\(150\) 0 0
\(151\) 18.1365 1.47592 0.737962 0.674842i \(-0.235788\pi\)
0.737962 + 0.674842i \(0.235788\pi\)
\(152\) 0 0
\(153\) 2.69398 + 2.69398i 0.217796 + 0.217796i
\(154\) 0 0
\(155\) 17.0989 + 2.40914i 1.37342 + 0.193506i
\(156\) 0 0
\(157\) 10.3489 0.825932 0.412966 0.910746i \(-0.364493\pi\)
0.412966 + 0.910746i \(0.364493\pi\)
\(158\) 0 0
\(159\) 2.41272 0.191341
\(160\) 0 0
\(161\) −10.3766 −0.817793
\(162\) 0 0
\(163\) 13.2079 1.03453 0.517263 0.855827i \(-0.326951\pi\)
0.517263 + 0.855827i \(0.326951\pi\)
\(164\) 0 0
\(165\) 1.65569 + 2.19876i 0.128896 + 0.171174i
\(166\) 0 0
\(167\) −0.0169530 0.0169530i −0.00131186 0.00131186i 0.706451 0.707762i \(-0.250295\pi\)
−0.707762 + 0.706451i \(0.750295\pi\)
\(168\) 0 0
\(169\) −21.6069 −1.66207
\(170\) 0 0
\(171\) −2.40037 + 2.40037i −0.183561 + 0.183561i
\(172\) 0 0
\(173\) 3.43931i 0.261486i 0.991416 + 0.130743i \(0.0417363\pi\)
−0.991416 + 0.130743i \(0.958264\pi\)
\(174\) 0 0
\(175\) −6.73114 12.1632i −0.508827 0.919449i
\(176\) 0 0
\(177\) 6.47458 + 6.47458i 0.486660 + 0.486660i
\(178\) 0 0
\(179\) 0.816756 0.816756i 0.0610472 0.0610472i −0.675924 0.736971i \(-0.736255\pi\)
0.736971 + 0.675924i \(0.236255\pi\)
\(180\) 0 0
\(181\) 15.2070 + 15.2070i 1.13032 + 1.13032i 0.990123 + 0.140201i \(0.0447748\pi\)
0.140201 + 0.990123i \(0.455225\pi\)
\(182\) 0 0
\(183\) −8.50808 + 8.50808i −0.628935 + 0.628935i
\(184\) 0 0
\(185\) −9.94190 1.40076i −0.730943 0.102986i
\(186\) 0 0
\(187\) 4.68966 0.342942
\(188\) 0 0
\(189\) 1.96597 + 1.96597i 0.143003 + 0.143003i
\(190\) 0 0
\(191\) 0.536269i 0.0388031i 0.999812 + 0.0194015i \(0.00617609\pi\)
−0.999812 + 0.0194015i \(0.993824\pi\)
\(192\) 0 0
\(193\) −7.70962 + 7.70962i −0.554951 + 0.554951i −0.927866 0.372915i \(-0.878358\pi\)
0.372915 + 0.927866i \(0.378358\pi\)
\(194\) 0 0
\(195\) −13.0256 1.83523i −0.932783 0.131424i
\(196\) 0 0
\(197\) 19.6564i 1.40046i −0.713916 0.700231i \(-0.753080\pi\)
0.713916 0.700231i \(-0.246920\pi\)
\(198\) 0 0
\(199\) 9.32963i 0.661360i −0.943743 0.330680i \(-0.892722\pi\)
0.943743 0.330680i \(-0.107278\pi\)
\(200\) 0 0
\(201\) 6.40870i 0.452035i
\(202\) 0 0
\(203\) 29.2396i 2.05222i
\(204\) 0 0
\(205\) 10.7361 + 1.51265i 0.749838 + 0.105648i
\(206\) 0 0
\(207\) −2.63907 + 2.63907i −0.183428 + 0.183428i
\(208\) 0 0
\(209\) 4.17854i 0.289036i
\(210\) 0 0
\(211\) −7.58277 7.58277i −0.522019 0.522019i 0.396162 0.918181i \(-0.370342\pi\)
−0.918181 + 0.396162i \(0.870342\pi\)
\(212\) 0 0
\(213\) 13.3214 0.912769
\(214\) 0 0
\(215\) −1.02096 0.143848i −0.0696291 0.00981033i
\(216\) 0 0
\(217\) 15.1820 15.1820i 1.03062 1.03062i
\(218\) 0 0
\(219\) −1.62933 1.62933i −0.110100 0.110100i
\(220\) 0 0
\(221\) −15.8481 + 15.8481i −1.06606 + 1.06606i
\(222\) 0 0
\(223\) 8.76331 + 8.76331i 0.586835 + 0.586835i 0.936773 0.349938i \(-0.113797\pi\)
−0.349938 + 0.936773i \(0.613797\pi\)
\(224\) 0 0
\(225\) −4.80535 1.38152i −0.320357 0.0921011i
\(226\) 0 0
\(227\) 25.0028i 1.65949i −0.558141 0.829746i \(-0.688485\pi\)
0.558141 0.829746i \(-0.311515\pi\)
\(228\) 0 0
\(229\) 7.89911 7.89911i 0.521988 0.521988i −0.396183 0.918171i \(-0.629666\pi\)
0.918171 + 0.396183i \(0.129666\pi\)
\(230\) 0 0
\(231\) 3.42234 0.225173
\(232\) 0 0
\(233\) 7.91066 + 7.91066i 0.518245 + 0.518245i 0.917040 0.398795i \(-0.130572\pi\)
−0.398795 + 0.917040i \(0.630572\pi\)
\(234\) 0 0
\(235\) 8.87759 + 11.7895i 0.579110 + 0.769059i
\(236\) 0 0
\(237\) 4.14482 0.269235
\(238\) 0 0
\(239\) 11.4515 0.740735 0.370368 0.928885i \(-0.379232\pi\)
0.370368 + 0.928885i \(0.379232\pi\)
\(240\) 0 0
\(241\) 20.9793 1.35139 0.675697 0.737180i \(-0.263843\pi\)
0.675697 + 0.737180i \(0.263843\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −1.61646 0.227749i −0.103272 0.0145504i
\(246\) 0 0
\(247\) −14.1208 14.1208i −0.898484 0.898484i
\(248\) 0 0
\(249\) −0.241277 −0.0152903
\(250\) 0 0
\(251\) 15.6566 15.6566i 0.988233 0.988233i −0.0116985 0.999932i \(-0.503724\pi\)
0.999932 + 0.0116985i \(0.00372383\pi\)
\(252\) 0 0
\(253\) 4.59407i 0.288826i
\(254\) 0 0
\(255\) −6.80545 + 5.12458i −0.426174 + 0.320914i
\(256\) 0 0
\(257\) −8.44246 8.44246i −0.526626 0.526626i 0.392939 0.919565i \(-0.371459\pi\)
−0.919565 + 0.392939i \(0.871459\pi\)
\(258\) 0 0
\(259\) −8.82732 + 8.82732i −0.548503 + 0.548503i
\(260\) 0 0
\(261\) −7.43646 7.43646i −0.460305 0.460305i
\(262\) 0 0
\(263\) 10.4796 10.4796i 0.646200 0.646200i −0.305872 0.952073i \(-0.598948\pi\)
0.952073 + 0.305872i \(0.0989480\pi\)
\(264\) 0 0
\(265\) −0.752691 + 5.34225i −0.0462375 + 0.328172i
\(266\) 0 0
\(267\) 2.86287 0.175205
\(268\) 0 0
\(269\) 5.49337 + 5.49337i 0.334937 + 0.334937i 0.854458 0.519521i \(-0.173890\pi\)
−0.519521 + 0.854458i \(0.673890\pi\)
\(270\) 0 0
\(271\) 29.9569i 1.81975i 0.414883 + 0.909875i \(0.363822\pi\)
−0.414883 + 0.909875i \(0.636178\pi\)
\(272\) 0 0
\(273\) −11.5653 + 11.5653i −0.699964 + 0.699964i
\(274\) 0 0
\(275\) −5.38502 + 2.98009i −0.324729 + 0.179706i
\(276\) 0 0
\(277\) 7.29980i 0.438602i 0.975657 + 0.219301i \(0.0703777\pi\)
−0.975657 + 0.219301i \(0.929622\pi\)
\(278\) 0 0
\(279\) 7.72239i 0.462328i
\(280\) 0 0
\(281\) 9.84488i 0.587296i −0.955914 0.293648i \(-0.905131\pi\)
0.955914 0.293648i \(-0.0948694\pi\)
\(282\) 0 0
\(283\) 2.84482i 0.169107i −0.996419 0.0845535i \(-0.973054\pi\)
0.996419 0.0845535i \(-0.0269464\pi\)
\(284\) 0 0
\(285\) −4.56605 6.06373i −0.270470 0.359184i
\(286\) 0 0
\(287\) 9.53244 9.53244i 0.562682 0.562682i
\(288\) 0 0
\(289\) 2.48490i 0.146171i
\(290\) 0 0
\(291\) 3.18909 + 3.18909i 0.186948 + 0.186948i
\(292\) 0 0
\(293\) −27.6123 −1.61313 −0.806563 0.591149i \(-0.798675\pi\)
−0.806563 + 0.591149i \(0.798675\pi\)
\(294\) 0 0
\(295\) −16.3559 + 12.3162i −0.952276 + 0.717074i
\(296\) 0 0
\(297\) 0.870396 0.870396i 0.0505055 0.0505055i
\(298\) 0 0
\(299\) −15.5250 15.5250i −0.897834 0.897834i
\(300\) 0 0
\(301\) −0.906503 + 0.906503i −0.0522500 + 0.0522500i
\(302\) 0 0
\(303\) −6.90372 6.90372i −0.396608 0.396608i
\(304\) 0 0
\(305\) −16.1843 21.4928i −0.926712 1.23068i
\(306\) 0 0
\(307\) 23.7612i 1.35612i −0.735006 0.678061i \(-0.762820\pi\)
0.735006 0.678061i \(-0.237180\pi\)
\(308\) 0 0
\(309\) −4.09832 + 4.09832i −0.233145 + 0.233145i
\(310\) 0 0
\(311\) −12.2337 −0.693707 −0.346854 0.937919i \(-0.612750\pi\)
−0.346854 + 0.937919i \(0.612750\pi\)
\(312\) 0 0
\(313\) 10.9229 + 10.9229i 0.617400 + 0.617400i 0.944864 0.327464i \(-0.106194\pi\)
−0.327464 + 0.944864i \(0.606194\pi\)
\(314\) 0 0
\(315\) −4.96636 + 3.73972i −0.279822 + 0.210709i
\(316\) 0 0
\(317\) 21.5403 1.20982 0.604911 0.796293i \(-0.293209\pi\)
0.604911 + 0.796293i \(0.293209\pi\)
\(318\) 0 0
\(319\) −12.9453 −0.724799
\(320\) 0 0
\(321\) 10.0579 0.561377
\(322\) 0 0
\(323\) −12.9331 −0.719617
\(324\) 0 0
\(325\) 8.12713 28.2687i 0.450812 1.56807i
\(326\) 0 0
\(327\) −11.2123 11.2123i −0.620040 0.620040i
\(328\) 0 0
\(329\) 18.3501 1.01167
\(330\) 0 0
\(331\) −21.2143 + 21.2143i −1.16604 + 1.16604i −0.182914 + 0.983129i \(0.558553\pi\)
−0.983129 + 0.182914i \(0.941447\pi\)
\(332\) 0 0
\(333\) 4.49007i 0.246054i
\(334\) 0 0
\(335\) −14.1901 1.99931i −0.775290 0.109234i
\(336\) 0 0
\(337\) 1.41673 + 1.41673i 0.0771744 + 0.0771744i 0.744640 0.667466i \(-0.232621\pi\)
−0.667466 + 0.744640i \(0.732621\pi\)
\(338\) 0 0
\(339\) −0.420404 + 0.420404i −0.0228332 + 0.0228332i
\(340\) 0 0
\(341\) −6.72154 6.72154i −0.363992 0.363992i
\(342\) 0 0
\(343\) 12.3265 12.3265i 0.665570 0.665570i
\(344\) 0 0
\(345\) −5.02012 6.66672i −0.270274 0.358924i
\(346\) 0 0
\(347\) −6.70115 −0.359736 −0.179868 0.983691i \(-0.557567\pi\)
−0.179868 + 0.983691i \(0.557567\pi\)
\(348\) 0 0
\(349\) −7.28479 7.28479i −0.389946 0.389946i 0.484722 0.874668i \(-0.338921\pi\)
−0.874668 + 0.484722i \(0.838921\pi\)
\(350\) 0 0
\(351\) 5.88276i 0.313999i
\(352\) 0 0
\(353\) 1.08305 1.08305i 0.0576448 0.0576448i −0.677697 0.735342i \(-0.737022\pi\)
0.735342 + 0.677697i \(0.237022\pi\)
\(354\) 0 0
\(355\) −4.15585 + 29.4963i −0.220570 + 1.56550i
\(356\) 0 0
\(357\) 10.5926i 0.560618i
\(358\) 0 0
\(359\) 35.6985i 1.88409i 0.335483 + 0.942046i \(0.391101\pi\)
−0.335483 + 0.942046i \(0.608899\pi\)
\(360\) 0 0
\(361\) 7.47647i 0.393499i
\(362\) 0 0
\(363\) 9.48482i 0.497824i
\(364\) 0 0
\(365\) 4.11596 3.09936i 0.215439 0.162228i
\(366\) 0 0
\(367\) 15.5759 15.5759i 0.813056 0.813056i −0.172035 0.985091i \(-0.555034\pi\)
0.985091 + 0.172035i \(0.0550341\pi\)
\(368\) 0 0
\(369\) 4.84873i 0.252415i
\(370\) 0 0
\(371\) 4.74333 + 4.74333i 0.246261 + 0.246261i
\(372\) 0 0
\(373\) 6.11186 0.316460 0.158230 0.987402i \(-0.449421\pi\)
0.158230 + 0.987402i \(0.449421\pi\)
\(374\) 0 0
\(375\) 4.55807 10.2090i 0.235378 0.527191i
\(376\) 0 0
\(377\) 43.7469 43.7469i 2.25308 2.25308i
\(378\) 0 0
\(379\) −25.5981 25.5981i −1.31488 1.31488i −0.917768 0.397116i \(-0.870011\pi\)
−0.397116 0.917768i \(-0.629989\pi\)
\(380\) 0 0
\(381\) −12.1223 + 12.1223i −0.621045 + 0.621045i
\(382\) 0 0
\(383\) −2.46156 2.46156i −0.125780 0.125780i 0.641415 0.767194i \(-0.278348\pi\)
−0.767194 + 0.641415i \(0.778348\pi\)
\(384\) 0 0
\(385\) −1.06766 + 7.57773i −0.0544129 + 0.386197i
\(386\) 0 0
\(387\) 0.461098i 0.0234389i
\(388\) 0 0
\(389\) 23.1160 23.1160i 1.17203 1.17203i 0.190302 0.981726i \(-0.439053\pi\)
0.981726 0.190302i \(-0.0609468\pi\)
\(390\) 0 0
\(391\) −14.2192 −0.719096
\(392\) 0 0
\(393\) 9.02309 + 9.02309i 0.455155 + 0.455155i
\(394\) 0 0
\(395\) −1.29305 + 9.17745i −0.0650603 + 0.461768i
\(396\) 0 0
\(397\) 29.1851 1.46476 0.732379 0.680897i \(-0.238410\pi\)
0.732379 + 0.680897i \(0.238410\pi\)
\(398\) 0 0
\(399\) −9.43808 −0.472495
\(400\) 0 0
\(401\) 1.70478 0.0851329 0.0425664 0.999094i \(-0.486447\pi\)
0.0425664 + 0.999094i \(0.486447\pi\)
\(402\) 0 0
\(403\) 45.4290 2.26298
\(404\) 0 0
\(405\) −0.311968 + 2.21420i −0.0155018 + 0.110024i
\(406\) 0 0
\(407\) 3.90814 + 3.90814i 0.193719 + 0.193719i
\(408\) 0 0
\(409\) 7.11999 0.352061 0.176030 0.984385i \(-0.443674\pi\)
0.176030 + 0.984385i \(0.443674\pi\)
\(410\) 0 0
\(411\) −8.12950 + 8.12950i −0.400999 + 0.400999i
\(412\) 0 0
\(413\) 25.4576i 1.25269i
\(414\) 0 0
\(415\) 0.0752705 0.534235i 0.00369488 0.0262245i
\(416\) 0 0
\(417\) 2.98593 + 2.98593i 0.146222 + 0.146222i
\(418\) 0 0
\(419\) 15.1825 15.1825i 0.741713 0.741713i −0.231194 0.972908i \(-0.574263\pi\)
0.972908 + 0.231194i \(0.0742633\pi\)
\(420\) 0 0
\(421\) 8.92932 + 8.92932i 0.435188 + 0.435188i 0.890389 0.455201i \(-0.150432\pi\)
−0.455201 + 0.890389i \(0.650432\pi\)
\(422\) 0 0
\(423\) 4.66693 4.66693i 0.226914 0.226914i
\(424\) 0 0
\(425\) −9.22376 16.6673i −0.447418 0.808484i
\(426\) 0 0
\(427\) −33.4532 −1.61891
\(428\) 0 0
\(429\) 5.12033 + 5.12033i 0.247212 + 0.247212i
\(430\) 0 0
\(431\) 23.7988i 1.14635i −0.819434 0.573173i \(-0.805712\pi\)
0.819434 0.573173i \(-0.194288\pi\)
\(432\) 0 0
\(433\) −18.7878 + 18.7878i −0.902886 + 0.902886i −0.995685 0.0927987i \(-0.970419\pi\)
0.0927987 + 0.995685i \(0.470419\pi\)
\(434\) 0 0
\(435\) 18.7857 14.1459i 0.900707 0.678242i
\(436\) 0 0
\(437\) 12.6695i 0.606062i
\(438\) 0 0
\(439\) 29.1333i 1.39046i −0.718789 0.695229i \(-0.755303\pi\)
0.718789 0.695229i \(-0.244697\pi\)
\(440\) 0 0
\(441\) 0.730041i 0.0347639i
\(442\) 0 0
\(443\) 38.7016i 1.83877i 0.393360 + 0.919384i \(0.371313\pi\)
−0.393360 + 0.919384i \(0.628687\pi\)
\(444\) 0 0
\(445\) −0.893124 + 6.33897i −0.0423381 + 0.300496i
\(446\) 0 0
\(447\) 0.994977 0.994977i 0.0470608 0.0470608i
\(448\) 0 0
\(449\) 9.96141i 0.470108i −0.971982 0.235054i \(-0.924473\pi\)
0.971982 0.235054i \(-0.0755267\pi\)
\(450\) 0 0
\(451\) −4.22031 4.22031i −0.198727 0.198727i
\(452\) 0 0
\(453\) 18.1365 0.852126
\(454\) 0 0
\(455\) −21.9999 29.2159i −1.03137 1.36966i
\(456\) 0 0
\(457\) −1.77907 + 1.77907i −0.0832213 + 0.0832213i −0.747492 0.664271i \(-0.768742\pi\)
0.664271 + 0.747492i \(0.268742\pi\)
\(458\) 0 0
\(459\) 2.69398 + 2.69398i 0.125744 + 0.125744i
\(460\) 0 0
\(461\) 8.51698 8.51698i 0.396675 0.396675i −0.480383 0.877059i \(-0.659502\pi\)
0.877059 + 0.480383i \(0.159502\pi\)
\(462\) 0 0
\(463\) 0.964355 + 0.964355i 0.0448174 + 0.0448174i 0.729160 0.684343i \(-0.239911\pi\)
−0.684343 + 0.729160i \(0.739911\pi\)
\(464\) 0 0
\(465\) 17.0989 + 2.40914i 0.792943 + 0.111721i
\(466\) 0 0
\(467\) 4.65741i 0.215519i 0.994177 + 0.107760i \(0.0343677\pi\)
−0.994177 + 0.107760i \(0.965632\pi\)
\(468\) 0 0
\(469\) −12.5993 + 12.5993i −0.581781 + 0.581781i
\(470\) 0 0
\(471\) 10.3489 0.476852
\(472\) 0 0
\(473\) 0.401338 + 0.401338i 0.0184535 + 0.0184535i
\(474\) 0 0
\(475\) 14.8508 8.21846i 0.681399 0.377089i
\(476\) 0 0
\(477\) 2.41272 0.110471
\(478\) 0 0
\(479\) −22.6790 −1.03623 −0.518114 0.855311i \(-0.673366\pi\)
−0.518114 + 0.855311i \(0.673366\pi\)
\(480\) 0 0
\(481\) −26.4140 −1.20437
\(482\) 0 0
\(483\) −10.3766 −0.472153
\(484\) 0 0
\(485\) −8.05618 + 6.06639i −0.365812 + 0.275461i
\(486\) 0 0
\(487\) −4.16034 4.16034i −0.188523 0.188523i 0.606534 0.795057i \(-0.292559\pi\)
−0.795057 + 0.606534i \(0.792559\pi\)
\(488\) 0 0
\(489\) 13.2079 0.597283
\(490\) 0 0
\(491\) 0.218295 0.218295i 0.00985151 0.00985151i −0.702164 0.712015i \(-0.747783\pi\)
0.712015 + 0.702164i \(0.247783\pi\)
\(492\) 0 0
\(493\) 40.0674i 1.80455i
\(494\) 0 0
\(495\) 1.65569 + 2.19876i 0.0744179 + 0.0988271i
\(496\) 0 0
\(497\) 26.1895 + 26.1895i 1.17476 + 1.17476i
\(498\) 0 0
\(499\) −14.9638 + 14.9638i −0.669871 + 0.669871i −0.957686 0.287815i \(-0.907071\pi\)
0.287815 + 0.957686i \(0.407071\pi\)
\(500\) 0 0
\(501\) −0.0169530 0.0169530i −0.000757405 0.000757405i
\(502\) 0 0
\(503\) 20.3166 20.3166i 0.905872 0.905872i −0.0900637 0.995936i \(-0.528707\pi\)
0.995936 + 0.0900637i \(0.0287071\pi\)
\(504\) 0 0
\(505\) 17.4399 13.1325i 0.776067 0.584387i
\(506\) 0 0
\(507\) −21.6069 −0.959595
\(508\) 0 0
\(509\) −18.0574 18.0574i −0.800381 0.800381i 0.182774 0.983155i \(-0.441492\pi\)
−0.983155 + 0.182774i \(0.941492\pi\)
\(510\) 0 0
\(511\) 6.40641i 0.283403i
\(512\) 0 0
\(513\) −2.40037 + 2.40037i −0.105979 + 0.105979i
\(514\) 0 0
\(515\) −7.79595 10.3530i −0.343531 0.456209i
\(516\) 0 0
\(517\) 8.12416i 0.357300i
\(518\) 0 0
\(519\) 3.43931i 0.150969i
\(520\) 0 0
\(521\) 3.75389i 0.164461i 0.996613 + 0.0822305i \(0.0262044\pi\)
−0.996613 + 0.0822305i \(0.973796\pi\)
\(522\) 0 0
\(523\) 30.3429i 1.32680i −0.748263 0.663402i \(-0.769112\pi\)
0.748263 0.663402i \(-0.230888\pi\)
\(524\) 0 0
\(525\) −6.73114 12.1632i −0.293771 0.530844i
\(526\) 0 0
\(527\) 20.8040 20.8040i 0.906237 0.906237i
\(528\) 0 0
\(529\) 9.07065i 0.394376i
\(530\) 0 0
\(531\) 6.47458 + 6.47458i 0.280973 + 0.280973i
\(532\) 0 0
\(533\) 28.5239 1.23551
\(534\) 0 0
\(535\) −3.13773 + 22.2702i −0.135656 + 0.962823i
\(536\) 0 0
\(537\) 0.816756 0.816756i 0.0352456 0.0352456i
\(538\) 0 0
\(539\) 0.635425 + 0.635425i 0.0273697 + 0.0273697i
\(540\) 0 0
\(541\) −25.0252 + 25.0252i −1.07592 + 1.07592i −0.0790451 + 0.996871i \(0.525187\pi\)
−0.996871 + 0.0790451i \(0.974813\pi\)
\(542\) 0 0
\(543\) 15.2070 + 15.2070i 0.652593 + 0.652593i
\(544\) 0 0
\(545\) 28.3241 21.3283i 1.21327 0.913606i
\(546\) 0 0
\(547\) 31.6172i 1.35185i −0.736969 0.675927i \(-0.763744\pi\)
0.736969 0.675927i \(-0.236256\pi\)
\(548\) 0 0
\(549\) −8.50808 + 8.50808i −0.363116 + 0.363116i
\(550\) 0 0
\(551\) 35.7005 1.52089
\(552\) 0 0
\(553\) 8.14857 + 8.14857i 0.346512 + 0.346512i
\(554\) 0 0
\(555\) −9.94190 1.40076i −0.422010 0.0594588i
\(556\) 0 0
\(557\) 5.06043 0.214418 0.107209 0.994237i \(-0.465809\pi\)
0.107209 + 0.994237i \(0.465809\pi\)
\(558\) 0 0
\(559\) −2.71253 −0.114728
\(560\) 0 0
\(561\) 4.68966 0.197998
\(562\) 0 0
\(563\) −10.2694 −0.432804 −0.216402 0.976304i \(-0.569432\pi\)
−0.216402 + 0.976304i \(0.569432\pi\)
\(564\) 0 0
\(565\) −0.799706 1.06201i −0.0336439 0.0446791i
\(566\) 0 0
\(567\) 1.96597 + 1.96597i 0.0825628 + 0.0825628i
\(568\) 0 0
\(569\) −30.5352 −1.28010 −0.640052 0.768332i \(-0.721087\pi\)
−0.640052 + 0.768332i \(0.721087\pi\)
\(570\) 0 0
\(571\) 15.6507 15.6507i 0.654962 0.654962i −0.299222 0.954184i \(-0.596727\pi\)
0.954184 + 0.299222i \(0.0967271\pi\)
\(572\) 0 0
\(573\) 0.536269i 0.0224030i
\(574\) 0 0
\(575\) 16.3276 9.03573i 0.680906 0.376816i
\(576\) 0 0
\(577\) −24.2221 24.2221i −1.00838 1.00838i −0.999965 0.00841548i \(-0.997321\pi\)
−0.00841548 0.999965i \(-0.502679\pi\)
\(578\) 0 0
\(579\) −7.70962 + 7.70962i −0.320401 + 0.320401i
\(580\) 0 0
\(581\) −0.474342 0.474342i −0.0196790 0.0196790i
\(582\) 0 0
\(583\) 2.10002 2.10002i 0.0869741 0.0869741i
\(584\) 0 0
\(585\) −13.0256 1.83523i −0.538542 0.0758775i
\(586\) 0 0
\(587\) −4.75989 −0.196461 −0.0982307 0.995164i \(-0.531318\pi\)
−0.0982307 + 0.995164i \(0.531318\pi\)
\(588\) 0 0
\(589\) 18.5366 + 18.5366i 0.763786 + 0.763786i
\(590\) 0 0
\(591\) 19.6564i 0.808557i
\(592\) 0 0
\(593\) 4.52357 4.52357i 0.185761 0.185761i −0.608100 0.793861i \(-0.708068\pi\)
0.793861 + 0.608100i \(0.208068\pi\)
\(594\) 0 0
\(595\) −23.4540 3.30454i −0.961522 0.135473i
\(596\) 0 0
\(597\) 9.32963i 0.381836i
\(598\) 0 0
\(599\) 4.69105i 0.191671i 0.995397 + 0.0958356i \(0.0305523\pi\)
−0.995397 + 0.0958356i \(0.969448\pi\)
\(600\) 0 0
\(601\) 2.24346i 0.0915126i 0.998953 + 0.0457563i \(0.0145698\pi\)
−0.998953 + 0.0457563i \(0.985430\pi\)
\(602\) 0 0
\(603\) 6.40870i 0.260983i
\(604\) 0 0
\(605\) −21.0013 2.95896i −0.853824 0.120299i
\(606\) 0 0
\(607\) 20.2716 20.2716i 0.822800 0.822800i −0.163709 0.986509i \(-0.552346\pi\)
0.986509 + 0.163709i \(0.0523457\pi\)
\(608\) 0 0
\(609\) 29.2396i 1.18485i
\(610\) 0 0
\(611\) 27.4545 + 27.4545i 1.11069 + 1.11069i
\(612\) 0 0
\(613\) 10.2599 0.414392 0.207196 0.978299i \(-0.433566\pi\)
0.207196 + 0.978299i \(0.433566\pi\)
\(614\) 0 0
\(615\) 10.7361 + 1.51265i 0.432919 + 0.0609958i
\(616\) 0 0
\(617\) −16.5590 + 16.5590i −0.666640 + 0.666640i −0.956937 0.290297i \(-0.906246\pi\)
0.290297 + 0.956937i \(0.406246\pi\)
\(618\) 0 0
\(619\) 14.3984 + 14.3984i 0.578720 + 0.578720i 0.934550 0.355831i \(-0.115802\pi\)
−0.355831 + 0.934550i \(0.615802\pi\)
\(620\) 0 0
\(621\) −2.63907 + 2.63907i −0.105902 + 0.105902i
\(622\) 0 0
\(623\) 5.62831 + 5.62831i 0.225493 + 0.225493i
\(624\) 0 0
\(625\) 21.1828 + 13.2773i 0.847313 + 0.531094i
\(626\) 0 0
\(627\) 4.17854i 0.166875i
\(628\) 0 0
\(629\) −12.0962 + 12.0962i −0.482306 + 0.482306i
\(630\) 0 0
\(631\) −14.9606 −0.595571 −0.297785 0.954633i \(-0.596248\pi\)
−0.297785 + 0.954633i \(0.596248\pi\)
\(632\) 0 0
\(633\) −7.58277 7.58277i −0.301388 0.301388i
\(634\) 0 0
\(635\) −23.0594 30.6230i −0.915086 1.21524i
\(636\) 0 0
\(637\) −4.29466 −0.170161
\(638\) 0 0
\(639\) 13.3214 0.526988
\(640\) 0 0
\(641\) −36.0219 −1.42278 −0.711390 0.702797i \(-0.751934\pi\)
−0.711390 + 0.702797i \(0.751934\pi\)
\(642\) 0 0
\(643\) 5.24582 0.206875 0.103437 0.994636i \(-0.467016\pi\)
0.103437 + 0.994636i \(0.467016\pi\)
\(644\) 0 0
\(645\) −1.02096 0.143848i −0.0402004 0.00566400i
\(646\) 0 0
\(647\) −28.2923 28.2923i −1.11229 1.11229i −0.992841 0.119445i \(-0.961888\pi\)
−0.119445 0.992841i \(-0.538112\pi\)
\(648\) 0 0
\(649\) 11.2709 0.442422
\(650\) 0 0
\(651\) 15.1820 15.1820i 0.595028 0.595028i
\(652\) 0 0
\(653\) 9.14647i 0.357929i 0.983856 + 0.178965i \(0.0572747\pi\)
−0.983856 + 0.178965i \(0.942725\pi\)
\(654\) 0 0
\(655\) −22.7938 + 17.1640i −0.890629 + 0.670653i
\(656\) 0 0
\(657\) −1.62933 1.62933i −0.0635662 0.0635662i
\(658\) 0 0
\(659\) 13.0731 13.0731i 0.509256 0.509256i −0.405042 0.914298i \(-0.632743\pi\)
0.914298 + 0.405042i \(0.132743\pi\)
\(660\) 0 0
\(661\) −10.8969 10.8969i −0.423839 0.423839i 0.462684 0.886523i \(-0.346886\pi\)
−0.886523 + 0.462684i \(0.846886\pi\)
\(662\) 0 0
\(663\) −15.8481 + 15.8481i −0.615488 + 0.615488i
\(664\) 0 0
\(665\) 2.94437 20.8978i 0.114178 0.810381i
\(666\) 0 0
\(667\) 39.2506 1.51979
\(668\) 0 0
\(669\) 8.76331 + 8.76331i 0.338809 + 0.338809i
\(670\) 0 0
\(671\) 14.8108i 0.571764i
\(672\) 0 0
\(673\) 13.7432 13.7432i 0.529762 0.529762i −0.390740 0.920501i \(-0.627781\pi\)
0.920501 + 0.390740i \(0.127781\pi\)
\(674\) 0 0
\(675\) −4.80535 1.38152i −0.184958 0.0531746i
\(676\) 0 0
\(677\) 10.5396i 0.405070i −0.979275 0.202535i \(-0.935082\pi\)
0.979275 0.202535i \(-0.0649181\pi\)
\(678\) 0 0
\(679\) 12.5393i 0.481214i
\(680\) 0 0
\(681\) 25.0028i 0.958108i
\(682\) 0 0
\(683\) 36.3666i 1.39153i 0.718270 + 0.695765i \(0.244934\pi\)
−0.718270 + 0.695765i \(0.755066\pi\)
\(684\) 0 0
\(685\) −15.4642 20.5365i −0.590856 0.784658i
\(686\) 0 0
\(687\) 7.89911 7.89911i 0.301370 0.301370i
\(688\) 0 0
\(689\) 14.1935i 0.540728i
\(690\) 0 0
\(691\) 7.71130 + 7.71130i 0.293352 + 0.293352i 0.838403 0.545051i \(-0.183490\pi\)
−0.545051 + 0.838403i \(0.683490\pi\)
\(692\) 0 0
\(693\) 3.42234 0.130004
\(694\) 0 0
\(695\) −7.54295 + 5.67992i −0.286120 + 0.215452i
\(696\) 0 0
\(697\) 13.0624 13.0624i 0.494774 0.494774i
\(698\) 0 0
\(699\) 7.91066 + 7.91066i 0.299209 + 0.299209i
\(700\) 0 0
\(701\) −8.27188 + 8.27188i −0.312425 + 0.312425i −0.845848 0.533424i \(-0.820905\pi\)
0.533424 + 0.845848i \(0.320905\pi\)
\(702\) 0 0
\(703\) −10.7778 10.7778i −0.406493 0.406493i
\(704\) 0 0
\(705\) 8.87759 + 11.7895i 0.334349 + 0.444016i
\(706\) 0 0
\(707\) 27.1450i 1.02089i
\(708\) 0 0
\(709\) −24.1462 + 24.1462i −0.906828 + 0.906828i −0.996015 0.0891868i \(-0.971573\pi\)
0.0891868 + 0.996015i \(0.471573\pi\)
\(710\) 0 0
\(711\) 4.14482 0.155443
\(712\) 0 0
\(713\) 20.3799 + 20.3799i 0.763234 + 0.763234i
\(714\) 0 0
\(715\) −12.9348 + 9.74005i −0.483734 + 0.364257i
\(716\) 0 0
\(717\) 11.4515 0.427664
\(718\) 0 0
\(719\) 5.46091 0.203658 0.101829 0.994802i \(-0.467531\pi\)
0.101829 + 0.994802i \(0.467531\pi\)
\(720\) 0 0
\(721\) −16.1143 −0.600128
\(722\) 0 0
\(723\) 20.9793 0.780227
\(724\) 0 0
\(725\) 25.4612 + 46.0084i 0.945606 + 1.70871i
\(726\) 0 0
\(727\) 0.818679 + 0.818679i 0.0303631 + 0.0303631i 0.722125 0.691762i \(-0.243165\pi\)
−0.691762 + 0.722125i \(0.743165\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −1.24219 + 1.24219i −0.0459441 + 0.0459441i
\(732\) 0 0
\(733\) 3.99744i 0.147649i −0.997271 0.0738245i \(-0.976480\pi\)
0.997271 0.0738245i \(-0.0235205\pi\)
\(734\) 0 0
\(735\) −1.61646 0.227749i −0.0596239 0.00840066i
\(736\) 0 0
\(737\) 5.57811 + 5.57811i 0.205472 + 0.205472i
\(738\) 0 0
\(739\) 22.1967 22.1967i 0.816517 0.816517i −0.169084 0.985602i \(-0.554081\pi\)
0.985602 + 0.169084i \(0.0540811\pi\)
\(740\) 0 0
\(741\) −14.1208 14.1208i −0.518740 0.518740i
\(742\) 0 0
\(743\) 29.4601 29.4601i 1.08078 1.08078i 0.0843481 0.996436i \(-0.473119\pi\)
0.996436 0.0843481i \(-0.0268808\pi\)
\(744\) 0 0
\(745\) 1.89268 + 2.51348i 0.0693423 + 0.0920867i
\(746\) 0 0
\(747\) −0.241277 −0.00882785
\(748\) 0 0
\(749\) 19.7735 + 19.7735i 0.722506 + 0.722506i
\(750\) 0 0
\(751\) 33.6280i 1.22710i 0.789654 + 0.613552i \(0.210260\pi\)
−0.789654 + 0.613552i \(0.789740\pi\)
\(752\) 0 0
\(753\) 15.6566 15.6566i 0.570557 0.570557i
\(754\) 0 0
\(755\) −5.65799 + 40.1577i −0.205915 + 1.46149i
\(756\) 0 0
\(757\) 22.0813i 0.802560i 0.915955 + 0.401280i \(0.131435\pi\)
−0.915955 + 0.401280i \(0.868565\pi\)
\(758\) 0 0
\(759\) 4.59407i 0.166754i
\(760\) 0 0
\(761\) 0.186655i 0.00676626i 0.999994 + 0.00338313i \(0.00107689\pi\)
−0.999994 + 0.00338313i \(0.998923\pi\)
\(762\) 0 0
\(763\) 44.0859i 1.59602i
\(764\) 0 0
\(765\) −6.80545 + 5.12458i −0.246052 + 0.185280i
\(766\) 0 0
\(767\) −38.0884 + 38.0884i −1.37529 + 1.37529i
\(768\) 0 0
\(769\) 2.52000i 0.0908734i −0.998967 0.0454367i \(-0.985532\pi\)
0.998967 0.0454367i \(-0.0144679\pi\)
\(770\) 0 0
\(771\) −8.44246 8.44246i −0.304048 0.304048i
\(772\) 0 0
\(773\) −3.95359 −0.142201 −0.0711003 0.997469i \(-0.522651\pi\)
−0.0711003 + 0.997469i \(0.522651\pi\)
\(774\) 0 0
\(775\) −10.6686 + 37.1088i −0.383228 + 1.33299i
\(776\) 0 0
\(777\) −8.82732 + 8.82732i −0.316678 + 0.316678i
\(778\) 0 0
\(779\) 11.6387 + 11.6387i 0.417001 + 0.417001i
\(780\) 0 0
\(781\) 11.5949 11.5949i 0.414899 0.414899i
\(782\) 0 0
\(783\) −7.43646 7.43646i −0.265757 0.265757i
\(784\) 0 0
\(785\) −3.22852 + 22.9145i −0.115231 + 0.817855i
\(786\) 0 0
\(787\) 25.3395i 0.903255i 0.892207 + 0.451628i \(0.149156\pi\)
−0.892207 + 0.451628i \(0.850844\pi\)
\(788\) 0 0
\(789\) 10.4796 10.4796i 0.373084 0.373084i
\(790\) 0 0
\(791\) −1.65300 −0.0587739
\(792\) 0 0
\(793\) −50.0510 50.0510i −1.77736 1.77736i
\(794\) 0 0
\(795\) −0.752691 + 5.34225i −0.0266952 + 0.189470i
\(796\) 0 0
\(797\) −40.2492 −1.42570 −0.712849 0.701317i \(-0.752596\pi\)
−0.712849 + 0.701317i \(0.752596\pi\)
\(798\) 0 0
\(799\) 25.1453 0.889576
\(800\) 0 0
\(801\) 2.86287 0.101155
\(802\) 0 0
\(803\) −2.83632 −0.100092
\(804\) 0 0
\(805\) 3.23717 22.9759i 0.114095 0.809795i
\(806\) 0 0
\(807\) 5.49337 + 5.49337i 0.193376 + 0.193376i
\(808\) 0 0
\(809\) 10.5847 0.372137 0.186069 0.982537i \(-0.440425\pi\)
0.186069 + 0.982537i \(0.440425\pi\)
\(810\) 0 0
\(811\) 14.0997 14.0997i 0.495109 0.495109i −0.414803 0.909911i \(-0.636149\pi\)
0.909911 + 0.414803i \(0.136149\pi\)
\(812\) 0 0
\(813\) 29.9569i 1.05063i
\(814\) 0 0
\(815\) −4.12045 + 29.2450i −0.144333 + 1.02441i
\(816\) 0 0
\(817\) −1.10681 1.10681i −0.0387222 0.0387222i
\(818\) 0 0
\(819\) −11.5653 + 11.5653i −0.404125 + 0.404125i
\(820\) 0 0
\(821\) −11.4283 11.4283i −0.398851 0.398851i 0.478977 0.877828i \(-0.341008\pi\)
−0.877828 + 0.478977i \(0.841008\pi\)
\(822\) 0 0
\(823\) −10.9724 + 10.9724i −0.382475 + 0.382475i −0.871993 0.489518i \(-0.837173\pi\)
0.489518 + 0.871993i \(0.337173\pi\)
\(824\) 0 0
\(825\) −5.38502 + 2.98009i −0.187482 + 0.103753i
\(826\) 0 0
\(827\) −24.8187 −0.863032 −0.431516 0.902105i \(-0.642021\pi\)
−0.431516 + 0.902105i \(0.642021\pi\)
\(828\) 0 0
\(829\) −7.79087 7.79087i −0.270588 0.270588i 0.558749 0.829337i \(-0.311282\pi\)
−0.829337 + 0.558749i \(0.811282\pi\)
\(830\) 0 0
\(831\) 7.29980i 0.253227i
\(832\) 0 0
\(833\) −1.96672 + 1.96672i −0.0681428 + 0.0681428i
\(834\) 0 0
\(835\) 0.0428261 0.0322485i 0.00148206 0.00111601i
\(836\) 0 0
\(837\) 7.72239i 0.266925i
\(838\) 0 0
\(839\) 12.7895i 0.441542i 0.975326 + 0.220771i \(0.0708573\pi\)
−0.975326 + 0.220771i \(0.929143\pi\)
\(840\) 0 0
\(841\) 81.6018i 2.81386i
\(842\) 0 0
\(843\) 9.84488i 0.339076i
\(844\) 0 0
\(845\) 6.74065 47.8419i 0.231885 1.64581i
\(846\) 0 0
\(847\) −18.6468 + 18.6468i −0.640713 + 0.640713i
\(848\) 0 0
\(849\) 2.84482i 0.0976340i
\(850\) 0 0
\(851\) −11.8496 11.8496i −0.406199 0.406199i
\(852\) 0 0
\(853\) −5.84193 −0.200024 −0.100012 0.994986i \(-0.531888\pi\)
−0.100012 + 0.994986i \(0.531888\pi\)
\(854\) 0 0
\(855\) −4.56605 6.06373i −0.156156 0.207375i
\(856\) 0 0
\(857\) −26.9251 + 26.9251i −0.919745 + 0.919745i −0.997011 0.0772652i \(-0.975381\pi\)
0.0772652 + 0.997011i \(0.475381\pi\)
\(858\) 0 0
\(859\) 2.05019 + 2.05019i 0.0699516 + 0.0699516i 0.741217 0.671265i \(-0.234249\pi\)
−0.671265 + 0.741217i \(0.734249\pi\)
\(860\) 0 0
\(861\) 9.53244 9.53244i 0.324865 0.324865i
\(862\) 0 0
\(863\) 18.1091 + 18.1091i 0.616443 + 0.616443i 0.944617 0.328175i \(-0.106433\pi\)
−0.328175 + 0.944617i \(0.606433\pi\)
\(864\) 0 0
\(865\) −7.61532 1.07295i −0.258929 0.0364815i
\(866\) 0 0
\(867\) 2.48490i 0.0843916i
\(868\) 0 0
\(869\) 3.60763 3.60763i 0.122381 0.122381i
\(870\) 0 0
\(871\) −37.7009 −1.27745
\(872\) 0 0
\(873\) 3.18909 + 3.18909i 0.107934 + 0.107934i
\(874\) 0 0
\(875\) 29.0316 11.1096i 0.981446 0.375572i
\(876\) 0 0
\(877\) 47.2518 1.59558 0.797791 0.602934i \(-0.206002\pi\)
0.797791 + 0.602934i \(0.206002\pi\)
\(878\) 0 0
\(879\) −27.6123 −0.931338
\(880\) 0 0
\(881\) 11.4431 0.385527 0.192763 0.981245i \(-0.438255\pi\)
0.192763 + 0.981245i \(0.438255\pi\)
\(882\) 0 0
\(883\) −46.1246 −1.55222 −0.776109 0.630599i \(-0.782809\pi\)
−0.776109 + 0.630599i \(0.782809\pi\)
\(884\) 0 0
\(885\) −16.3559 + 12.3162i −0.549797 + 0.414003i
\(886\) 0 0
\(887\) 25.0305 + 25.0305i 0.840441 + 0.840441i 0.988916 0.148475i \(-0.0474365\pi\)
−0.148475 + 0.988916i \(0.547436\pi\)
\(888\) 0 0
\(889\) −47.6641 −1.59860
\(890\) 0 0
\(891\) 0.870396 0.870396i 0.0291594 0.0291594i
\(892\) 0 0
\(893\) 22.4047i 0.749745i
\(894\) 0 0
\(895\) 1.55366 + 2.06326i 0.0519331 + 0.0689672i
\(896\) 0 0
\(897\) −15.5250 15.5250i −0.518365 0.518365i
\(898\) 0 0
\(899\) −57.4272 + 57.4272i −1.91531 + 1.91531i
\(900\) 0 0
\(901\) 6.49984 + 6.49984i 0.216541 + 0.216541i
\(902\) 0 0
\(903\) −0.906503 + 0.906503i −0.0301665 + 0.0301665i
\(904\) 0 0
\(905\) −38.4153 + 28.9271i −1.27697 + 0.961571i
\(906\) 0 0
\(907\) 25.0169 0.830671 0.415336 0.909668i \(-0.363664\pi\)
0.415336 + 0.909668i \(0.363664\pi\)
\(908\) 0 0
\(909\) −6.90372 6.90372i −0.228982 0.228982i
\(910\) 0 0
\(911\) 5.76809i 0.191105i −0.995424 0.0955527i \(-0.969538\pi\)
0.995424 0.0955527i \(-0.0304618\pi\)
\(912\) 0 0
\(913\) −0.210006 + 0.210006i −0.00695019 + 0.00695019i
\(914\) 0 0
\(915\) −16.1843 21.4928i −0.535038 0.710531i
\(916\) 0 0
\(917\) 35.4782i 1.17159i
\(918\) 0 0
\(919\) 0.398221i 0.0131361i 0.999978 + 0.00656804i \(0.00209069\pi\)
−0.999978 + 0.00656804i \(0.997909\pi\)
\(920\) 0 0
\(921\) 23.7612i 0.782958i
\(922\) 0 0
\(923\) 78.3668i 2.57947i
\(924\) 0 0
\(925\) 6.20310 21.5764i 0.203957 0.709426i
\(926\) 0 0
\(927\) −4.09832 + 4.09832i −0.134606 + 0.134606i
\(928\) 0 0
\(929\) 4.71373i 0.154653i 0.997006 + 0.0773263i \(0.0246383\pi\)
−0.997006 + 0.0773263i \(0.975362\pi\)
\(930\) 0 0
\(931\) −1.75237 1.75237i −0.0574315 0.0574315i
\(932\) 0 0
\(933\) −12.2337 −0.400512
\(934\) 0 0
\(935\) −1.46302 + 10.3839i −0.0478460 + 0.339588i
\(936\) 0 0
\(937\) −7.20557 + 7.20557i −0.235396 + 0.235396i −0.814940 0.579545i \(-0.803230\pi\)
0.579545 + 0.814940i \(0.303230\pi\)
\(938\) 0 0
\(939\) 10.9229 + 10.9229i 0.356456 + 0.356456i
\(940\) 0 0
\(941\) 36.0800 36.0800i 1.17617 1.17617i 0.195464 0.980711i \(-0.437379\pi\)
0.980711 0.195464i \(-0.0626212\pi\)
\(942\) 0 0
\(943\) 12.7961 + 12.7961i 0.416699 + 0.416699i
\(944\) 0 0
\(945\) −4.96636 + 3.73972i −0.161556 + 0.121653i
\(946\) 0 0
\(947\) 27.2599i 0.885828i −0.896564 0.442914i \(-0.853945\pi\)
0.896564 0.442914i \(-0.146055\pi\)
\(948\) 0 0
\(949\) 9.58495 9.58495i 0.311141 0.311141i
\(950\) 0 0
\(951\) 21.5403 0.698491
\(952\) 0 0
\(953\) 17.4014 + 17.4014i 0.563687 + 0.563687i 0.930353 0.366666i \(-0.119501\pi\)
−0.366666 + 0.930353i \(0.619501\pi\)
\(954\) 0 0
\(955\) −1.18741 0.167299i −0.0384236 0.00541365i
\(956\) 0 0
\(957\) −12.9453 −0.418463
\(958\) 0 0
\(959\) −31.9646 −1.03219
\(960\) 0 0
\(961\) −28.6353 −0.923721
\(962\) 0 0
\(963\) 10.0579 0.324111
\(964\) 0 0
\(965\) −14.6655 19.4758i −0.472099 0.626948i
\(966\) 0 0
\(967\) 28.3082 + 28.3082i 0.910331 + 0.910331i 0.996298 0.0859674i \(-0.0273981\pi\)
−0.0859674 + 0.996298i \(0.527398\pi\)
\(968\) 0 0
\(969\) −12.9331 −0.415471
\(970\) 0 0
\(971\) 25.2474 25.2474i 0.810229 0.810229i −0.174439 0.984668i \(-0.555811\pi\)
0.984668 + 0.174439i \(0.0558112\pi\)
\(972\) 0 0
\(973\) 11.7405i 0.376382i
\(974\) 0 0
\(975\) 8.12713 28.2687i 0.260277 0.905324i
\(976\) 0 0
\(977\) 15.1184 + 15.1184i 0.483680 + 0.483680i 0.906305 0.422625i \(-0.138891\pi\)
−0.422625 + 0.906305i \(0.638891\pi\)
\(978\) 0 0
\(979\) 2.49183 2.49183i 0.0796393 0.0796393i
\(980\) 0 0
\(981\) −11.2123 11.2123i −0.357980 0.357980i
\(982\) 0 0
\(983\) −29.6618 + 29.6618i −0.946063 + 0.946063i −0.998618 0.0525548i \(-0.983264\pi\)
0.0525548 + 0.998618i \(0.483264\pi\)
\(984\) 0 0
\(985\) 43.5232 + 6.13217i 1.38677 + 0.195387i
\(986\) 0 0
\(987\) 18.3501 0.584089
\(988\) 0 0
\(989\) −1.21687 1.21687i −0.0386942 0.0386942i
\(990\) 0 0
\(991\) 35.7662i 1.13615i −0.822977 0.568075i \(-0.807688\pi\)
0.822977 0.568075i \(-0.192312\pi\)
\(992\) 0 0
\(993\) −21.2143 + 21.2143i −0.673215 + 0.673215i
\(994\) 0 0
\(995\) 20.6577 + 2.91054i 0.654892 + 0.0922704i
\(996\) 0 0
\(997\) 53.1029i 1.68178i −0.541203 0.840892i \(-0.682031\pi\)
0.541203 0.840892i \(-0.317969\pi\)
\(998\) 0 0
\(999\) 4.49007i 0.142059i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.y.j.1567.4 16
4.3 odd 2 1920.2.y.i.1567.4 16
5.3 odd 4 1920.2.bc.j.1183.8 16
8.3 odd 2 240.2.y.e.187.2 yes 16
8.5 even 2 960.2.y.e.847.5 16
16.3 odd 4 1920.2.bc.j.607.8 16
16.5 even 4 240.2.bc.e.67.6 yes 16
16.11 odd 4 960.2.bc.e.367.1 16
16.13 even 4 1920.2.bc.i.607.8 16
20.3 even 4 1920.2.bc.i.1183.8 16
24.11 even 2 720.2.z.f.667.7 16
40.3 even 4 240.2.bc.e.43.6 yes 16
40.13 odd 4 960.2.bc.e.463.1 16
48.5 odd 4 720.2.bd.f.307.3 16
80.3 even 4 inner 1920.2.y.j.223.4 16
80.13 odd 4 1920.2.y.i.223.4 16
80.43 even 4 960.2.y.e.943.5 16
80.53 odd 4 240.2.y.e.163.2 16
120.83 odd 4 720.2.bd.f.523.3 16
240.53 even 4 720.2.z.f.163.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.e.163.2 16 80.53 odd 4
240.2.y.e.187.2 yes 16 8.3 odd 2
240.2.bc.e.43.6 yes 16 40.3 even 4
240.2.bc.e.67.6 yes 16 16.5 even 4
720.2.z.f.163.7 16 240.53 even 4
720.2.z.f.667.7 16 24.11 even 2
720.2.bd.f.307.3 16 48.5 odd 4
720.2.bd.f.523.3 16 120.83 odd 4
960.2.y.e.847.5 16 8.5 even 2
960.2.y.e.943.5 16 80.43 even 4
960.2.bc.e.367.1 16 16.11 odd 4
960.2.bc.e.463.1 16 40.13 odd 4
1920.2.y.i.223.4 16 80.13 odd 4
1920.2.y.i.1567.4 16 4.3 odd 2
1920.2.y.j.223.4 16 80.3 even 4 inner
1920.2.y.j.1567.4 16 1.1 even 1 trivial
1920.2.bc.i.607.8 16 16.13 even 4
1920.2.bc.i.1183.8 16 20.3 even 4
1920.2.bc.j.607.8 16 16.3 odd 4
1920.2.bc.j.1183.8 16 5.3 odd 4