Properties

Label 2-197-1.1-c9-0-43
Degree $2$
Conductor $197$
Sign $-1$
Analytic cond. $101.462$
Root an. cond. $10.0728$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 30.8·2-s − 107.·3-s + 436.·4-s − 558.·5-s + 3.30e3·6-s − 8.31e3·7-s + 2.31e3·8-s − 8.15e3·9-s + 1.72e4·10-s − 7.71e4·11-s − 4.68e4·12-s + 8.18e4·13-s + 2.56e5·14-s + 5.99e4·15-s − 2.95e5·16-s + 3.39e5·17-s + 2.51e5·18-s − 2.59e5·19-s − 2.43e5·20-s + 8.93e5·21-s + 2.37e6·22-s − 1.85e6·23-s − 2.48e5·24-s − 1.64e6·25-s − 2.52e6·26-s + 2.98e6·27-s − 3.63e6·28-s + ⋯
L(s)  = 1  − 1.36·2-s − 0.765·3-s + 0.852·4-s − 0.399·5-s + 1.04·6-s − 1.30·7-s + 0.200·8-s − 0.414·9-s + 0.543·10-s − 1.58·11-s − 0.652·12-s + 0.794·13-s + 1.78·14-s + 0.305·15-s − 1.12·16-s + 0.985·17-s + 0.564·18-s − 0.456·19-s − 0.340·20-s + 1.00·21-s + 2.16·22-s − 1.38·23-s − 0.153·24-s − 0.840·25-s − 1.08·26-s + 1.08·27-s − 1.11·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(197\)
Sign: $-1$
Analytic conductor: \(101.462\)
Root analytic conductor: \(10.0728\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 197,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad197 \( 1 + 1.50e9T \)
good2 \( 1 + 30.8T + 512T^{2} \)
3 \( 1 + 107.T + 1.96e4T^{2} \)
5 \( 1 + 558.T + 1.95e6T^{2} \)
7 \( 1 + 8.31e3T + 4.03e7T^{2} \)
11 \( 1 + 7.71e4T + 2.35e9T^{2} \)
13 \( 1 - 8.18e4T + 1.06e10T^{2} \)
17 \( 1 - 3.39e5T + 1.18e11T^{2} \)
19 \( 1 + 2.59e5T + 3.22e11T^{2} \)
23 \( 1 + 1.85e6T + 1.80e12T^{2} \)
29 \( 1 - 5.16e5T + 1.45e13T^{2} \)
31 \( 1 + 4.31e6T + 2.64e13T^{2} \)
37 \( 1 + 2.47e5T + 1.29e14T^{2} \)
41 \( 1 + 1.19e7T + 3.27e14T^{2} \)
43 \( 1 - 4.45e7T + 5.02e14T^{2} \)
47 \( 1 - 2.11e7T + 1.11e15T^{2} \)
53 \( 1 - 2.99e7T + 3.29e15T^{2} \)
59 \( 1 + 7.17e7T + 8.66e15T^{2} \)
61 \( 1 - 7.09e7T + 1.16e16T^{2} \)
67 \( 1 - 2.92e8T + 2.72e16T^{2} \)
71 \( 1 - 9.86e7T + 4.58e16T^{2} \)
73 \( 1 - 2.03e8T + 5.88e16T^{2} \)
79 \( 1 + 8.76e7T + 1.19e17T^{2} \)
83 \( 1 - 4.38e8T + 1.86e17T^{2} \)
89 \( 1 - 7.35e8T + 3.50e17T^{2} \)
97 \( 1 - 8.85e7T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.34639653111310761907760832172, −9.467295346442820652243553812983, −8.306141669227629049040610539952, −7.60108101177536351673389669603, −6.32820807619317909864552309031, −5.45242451403417197636401435643, −3.74776290956352335795872136456, −2.36971915770509447229520612779, −0.66262904691575939657754896534, 0, 0.66262904691575939657754896534, 2.36971915770509447229520612779, 3.74776290956352335795872136456, 5.45242451403417197636401435643, 6.32820807619317909864552309031, 7.60108101177536351673389669603, 8.306141669227629049040610539952, 9.467295346442820652243553812983, 10.34639653111310761907760832172

Graph of the $Z$-function along the critical line