Properties

Label 197.10.a.a.1.12
Level $197$
Weight $10$
Character 197.1
Self dual yes
Analytic conductor $101.462$
Analytic rank $1$
Dimension $71$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,10,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.462059724\)
Analytic rank: \(1\)
Dimension: \(71\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Character \(\chi\) \(=\) 197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-30.8011 q^{2} -107.364 q^{3} +436.705 q^{4} -558.513 q^{5} +3306.94 q^{6} -8318.45 q^{7} +2319.16 q^{8} -8155.88 q^{9} +17202.8 q^{10} -77158.5 q^{11} -46886.6 q^{12} +81842.9 q^{13} +256217. q^{14} +59964.4 q^{15} -295026. q^{16} +339216. q^{17} +251210. q^{18} -259370. q^{19} -243905. q^{20} +893106. q^{21} +2.37656e6 q^{22} -1.85438e6 q^{23} -248996. q^{24} -1.64119e6 q^{25} -2.52085e6 q^{26} +2.98891e6 q^{27} -3.63271e6 q^{28} +516651. q^{29} -1.84697e6 q^{30} -4.31210e6 q^{31} +7.89969e6 q^{32} +8.28408e6 q^{33} -1.04482e7 q^{34} +4.64596e6 q^{35} -3.56171e6 q^{36} -247875. q^{37} +7.98886e6 q^{38} -8.78701e6 q^{39} -1.29528e6 q^{40} -1.19189e7 q^{41} -2.75086e7 q^{42} +4.45674e7 q^{43} -3.36955e7 q^{44} +4.55516e6 q^{45} +5.71170e7 q^{46} +2.11544e7 q^{47} +3.16753e7 q^{48} +2.88430e7 q^{49} +5.05503e7 q^{50} -3.64197e7 q^{51} +3.57412e7 q^{52} +2.99273e7 q^{53} -9.20614e7 q^{54} +4.30940e7 q^{55} -1.92918e7 q^{56} +2.78471e7 q^{57} -1.59134e7 q^{58} -7.17560e7 q^{59} +2.61868e7 q^{60} +7.09576e7 q^{61} +1.32817e8 q^{62} +6.78443e7 q^{63} -9.22657e7 q^{64} -4.57103e7 q^{65} -2.55158e8 q^{66} +2.92852e8 q^{67} +1.48137e8 q^{68} +1.99095e8 q^{69} -1.43100e8 q^{70} +9.86093e7 q^{71} -1.89148e7 q^{72} +2.03894e8 q^{73} +7.63482e6 q^{74} +1.76205e8 q^{75} -1.13268e8 q^{76} +6.41839e8 q^{77} +2.70649e8 q^{78} -8.76574e7 q^{79} +1.64776e8 q^{80} -1.60370e8 q^{81} +3.67114e8 q^{82} +4.38233e8 q^{83} +3.90024e8 q^{84} -1.89456e8 q^{85} -1.37272e9 q^{86} -5.54699e7 q^{87} -1.78943e8 q^{88} +7.35999e8 q^{89} -1.40304e8 q^{90} -6.80806e8 q^{91} -8.09819e8 q^{92} +4.62966e8 q^{93} -6.51577e8 q^{94} +1.44861e8 q^{95} -8.48146e8 q^{96} +8.85921e7 q^{97} -8.88396e8 q^{98} +6.29295e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 71 q - 32 q^{2} - 892 q^{3} + 16896 q^{4} - 2329 q^{5} - 10272 q^{6} - 37846 q^{7} - 24933 q^{8} + 419903 q^{9} - 138907 q^{10} - 143074 q^{11} - 496640 q^{12} - 433821 q^{13} - 130143 q^{14} - 670126 q^{15}+ \cdots - 6380320552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −30.8011 −1.36123 −0.680614 0.732643i \(-0.738287\pi\)
−0.680614 + 0.732643i \(0.738287\pi\)
\(3\) −107.364 −0.765270 −0.382635 0.923900i \(-0.624983\pi\)
−0.382635 + 0.923900i \(0.624983\pi\)
\(4\) 436.705 0.852940
\(5\) −558.513 −0.399639 −0.199820 0.979833i \(-0.564036\pi\)
−0.199820 + 0.979833i \(0.564036\pi\)
\(6\) 3306.94 1.04171
\(7\) −8318.45 −1.30949 −0.654744 0.755851i \(-0.727223\pi\)
−0.654744 + 0.755851i \(0.727223\pi\)
\(8\) 2319.16 0.200183
\(9\) −8155.88 −0.414361
\(10\) 17202.8 0.544000
\(11\) −77158.5 −1.58897 −0.794487 0.607281i \(-0.792260\pi\)
−0.794487 + 0.607281i \(0.792260\pi\)
\(12\) −46886.6 −0.652729
\(13\) 81842.9 0.794760 0.397380 0.917654i \(-0.369920\pi\)
0.397380 + 0.917654i \(0.369920\pi\)
\(14\) 256217. 1.78251
\(15\) 59964.4 0.305832
\(16\) −295026. −1.12543
\(17\) 339216. 0.985044 0.492522 0.870300i \(-0.336075\pi\)
0.492522 + 0.870300i \(0.336075\pi\)
\(18\) 251210. 0.564040
\(19\) −259370. −0.456592 −0.228296 0.973592i \(-0.573315\pi\)
−0.228296 + 0.973592i \(0.573315\pi\)
\(20\) −243905. −0.340868
\(21\) 893106. 1.00211
\(22\) 2.37656e6 2.16295
\(23\) −1.85438e6 −1.38173 −0.690867 0.722982i \(-0.742771\pi\)
−0.690867 + 0.722982i \(0.742771\pi\)
\(24\) −248996. −0.153194
\(25\) −1.64119e6 −0.840289
\(26\) −2.52085e6 −1.08185
\(27\) 2.98891e6 1.08237
\(28\) −3.63271e6 −1.11691
\(29\) 516651. 0.135646 0.0678228 0.997697i \(-0.478395\pi\)
0.0678228 + 0.997697i \(0.478395\pi\)
\(30\) −1.84697e6 −0.416307
\(31\) −4.31210e6 −0.838613 −0.419306 0.907845i \(-0.637727\pi\)
−0.419306 + 0.907845i \(0.637727\pi\)
\(32\) 7.89969e6 1.33179
\(33\) 8.28408e6 1.21599
\(34\) −1.04482e7 −1.34087
\(35\) 4.64596e6 0.523322
\(36\) −3.56171e6 −0.353425
\(37\) −247875. −0.0217433 −0.0108717 0.999941i \(-0.503461\pi\)
−0.0108717 + 0.999941i \(0.503461\pi\)
\(38\) 7.98886e6 0.621525
\(39\) −8.78701e6 −0.608206
\(40\) −1.29528e6 −0.0800008
\(41\) −1.19189e7 −0.658731 −0.329366 0.944202i \(-0.606835\pi\)
−0.329366 + 0.944202i \(0.606835\pi\)
\(42\) −2.75086e7 −1.36410
\(43\) 4.45674e7 1.98797 0.993984 0.109527i \(-0.0349337\pi\)
0.993984 + 0.109527i \(0.0349337\pi\)
\(44\) −3.36955e7 −1.35530
\(45\) 4.55516e6 0.165595
\(46\) 5.71170e7 1.88085
\(47\) 2.11544e7 0.632353 0.316177 0.948700i \(-0.397601\pi\)
0.316177 + 0.948700i \(0.397601\pi\)
\(48\) 3.16753e7 0.861261
\(49\) 2.88430e7 0.714758
\(50\) 5.05503e7 1.14382
\(51\) −3.64197e7 −0.753825
\(52\) 3.57412e7 0.677882
\(53\) 2.99273e7 0.520987 0.260493 0.965476i \(-0.416115\pi\)
0.260493 + 0.965476i \(0.416115\pi\)
\(54\) −9.20614e7 −1.47335
\(55\) 4.30940e7 0.635016
\(56\) −1.92918e7 −0.262137
\(57\) 2.78471e7 0.349416
\(58\) −1.59134e7 −0.184645
\(59\) −7.17560e7 −0.770947 −0.385473 0.922719i \(-0.625962\pi\)
−0.385473 + 0.922719i \(0.625962\pi\)
\(60\) 2.61868e7 0.260856
\(61\) 7.09576e7 0.656167 0.328084 0.944649i \(-0.393597\pi\)
0.328084 + 0.944649i \(0.393597\pi\)
\(62\) 1.32817e8 1.14154
\(63\) 6.78443e7 0.542601
\(64\) −9.22657e7 −0.687433
\(65\) −4.57103e7 −0.317617
\(66\) −2.55158e8 −1.65524
\(67\) 2.92852e8 1.77546 0.887732 0.460360i \(-0.152280\pi\)
0.887732 + 0.460360i \(0.152280\pi\)
\(68\) 1.48137e8 0.840183
\(69\) 1.99095e8 1.05740
\(70\) −1.43100e8 −0.712361
\(71\) 9.86093e7 0.460527 0.230264 0.973128i \(-0.426041\pi\)
0.230264 + 0.973128i \(0.426041\pi\)
\(72\) −1.89148e7 −0.0829480
\(73\) 2.03894e8 0.840331 0.420166 0.907447i \(-0.361972\pi\)
0.420166 + 0.907447i \(0.361972\pi\)
\(74\) 7.63482e6 0.0295976
\(75\) 1.76205e8 0.643048
\(76\) −1.13268e8 −0.389445
\(77\) 6.41839e8 2.08074
\(78\) 2.70649e8 0.827906
\(79\) −8.76574e7 −0.253202 −0.126601 0.991954i \(-0.540407\pi\)
−0.126601 + 0.991954i \(0.540407\pi\)
\(80\) 1.64776e8 0.449767
\(81\) −1.60370e8 −0.413943
\(82\) 3.67114e8 0.896683
\(83\) 4.38233e8 1.01357 0.506785 0.862073i \(-0.330834\pi\)
0.506785 + 0.862073i \(0.330834\pi\)
\(84\) 3.90024e8 0.854741
\(85\) −1.89456e8 −0.393662
\(86\) −1.37272e9 −2.70608
\(87\) −5.54699e7 −0.103806
\(88\) −1.78943e8 −0.318085
\(89\) 7.35999e8 1.24343 0.621717 0.783242i \(-0.286436\pi\)
0.621717 + 0.783242i \(0.286436\pi\)
\(90\) −1.40304e8 −0.225412
\(91\) −6.80806e8 −1.04073
\(92\) −8.09819e8 −1.17854
\(93\) 4.62966e8 0.641765
\(94\) −6.51577e8 −0.860776
\(95\) 1.44861e8 0.182472
\(96\) −8.48146e8 −1.01918
\(97\) 8.85921e7 0.101607 0.0508033 0.998709i \(-0.483822\pi\)
0.0508033 + 0.998709i \(0.483822\pi\)
\(98\) −8.88396e8 −0.972947
\(99\) 6.29295e8 0.658410
\(100\) −7.16715e8 −0.716715
\(101\) 1.32225e9 1.26435 0.632174 0.774826i \(-0.282163\pi\)
0.632174 + 0.774826i \(0.282163\pi\)
\(102\) 1.12177e9 1.02613
\(103\) −1.69416e9 −1.48316 −0.741578 0.670867i \(-0.765922\pi\)
−0.741578 + 0.670867i \(0.765922\pi\)
\(104\) 1.89807e8 0.159097
\(105\) −4.98811e8 −0.400483
\(106\) −9.21793e8 −0.709181
\(107\) −6.42456e8 −0.473823 −0.236912 0.971531i \(-0.576135\pi\)
−0.236912 + 0.971531i \(0.576135\pi\)
\(108\) 1.30527e9 0.923195
\(109\) 5.67111e8 0.384812 0.192406 0.981315i \(-0.438371\pi\)
0.192406 + 0.981315i \(0.438371\pi\)
\(110\) −1.32734e9 −0.864401
\(111\) 2.66130e7 0.0166395
\(112\) 2.45416e9 1.47374
\(113\) −2.34652e9 −1.35385 −0.676925 0.736052i \(-0.736688\pi\)
−0.676925 + 0.736052i \(0.736688\pi\)
\(114\) −8.57720e8 −0.475635
\(115\) 1.03570e9 0.552195
\(116\) 2.25624e8 0.115698
\(117\) −6.67500e8 −0.329318
\(118\) 2.21016e9 1.04943
\(119\) −2.82175e9 −1.28990
\(120\) 1.39067e8 0.0612222
\(121\) 3.59549e9 1.52484
\(122\) −2.18557e9 −0.893193
\(123\) 1.27966e9 0.504107
\(124\) −1.88312e9 −0.715286
\(125\) 2.00747e9 0.735451
\(126\) −2.08968e9 −0.738603
\(127\) −4.13833e9 −1.41159 −0.705794 0.708417i \(-0.749410\pi\)
−0.705794 + 0.708417i \(0.749410\pi\)
\(128\) −1.20276e9 −0.396036
\(129\) −4.78495e9 −1.52133
\(130\) 1.40792e9 0.432349
\(131\) −5.29277e8 −0.157023 −0.0785114 0.996913i \(-0.525017\pi\)
−0.0785114 + 0.996913i \(0.525017\pi\)
\(132\) 3.61770e9 1.03717
\(133\) 2.15756e9 0.597901
\(134\) −9.02016e9 −2.41681
\(135\) −1.66934e9 −0.432557
\(136\) 7.86696e8 0.197189
\(137\) 3.46052e9 0.839265 0.419633 0.907694i \(-0.362159\pi\)
0.419633 + 0.907694i \(0.362159\pi\)
\(138\) −6.13233e9 −1.43936
\(139\) −5.48330e9 −1.24588 −0.622939 0.782271i \(-0.714061\pi\)
−0.622939 + 0.782271i \(0.714061\pi\)
\(140\) 2.02891e9 0.446362
\(141\) −2.27123e9 −0.483921
\(142\) −3.03727e9 −0.626882
\(143\) −6.31487e9 −1.26285
\(144\) 2.40619e9 0.466336
\(145\) −2.88556e8 −0.0542093
\(146\) −6.28014e9 −1.14388
\(147\) −3.09672e9 −0.546983
\(148\) −1.08248e8 −0.0185457
\(149\) −4.78367e8 −0.0795102 −0.0397551 0.999209i \(-0.512658\pi\)
−0.0397551 + 0.999209i \(0.512658\pi\)
\(150\) −5.42731e9 −0.875334
\(151\) 3.24609e9 0.508118 0.254059 0.967189i \(-0.418234\pi\)
0.254059 + 0.967189i \(0.418234\pi\)
\(152\) −6.01521e8 −0.0914017
\(153\) −2.76660e9 −0.408164
\(154\) −1.97693e10 −2.83236
\(155\) 2.40836e9 0.335142
\(156\) −3.83733e9 −0.518763
\(157\) 4.72832e9 0.621096 0.310548 0.950558i \(-0.399487\pi\)
0.310548 + 0.950558i \(0.399487\pi\)
\(158\) 2.69994e9 0.344665
\(159\) −3.21313e9 −0.398696
\(160\) −4.41208e9 −0.532235
\(161\) 1.54256e10 1.80936
\(162\) 4.93957e9 0.563471
\(163\) −7.60806e9 −0.844170 −0.422085 0.906556i \(-0.638702\pi\)
−0.422085 + 0.906556i \(0.638702\pi\)
\(164\) −5.20504e9 −0.561858
\(165\) −4.62676e9 −0.485959
\(166\) −1.34980e10 −1.37970
\(167\) 5.32691e9 0.529970 0.264985 0.964253i \(-0.414633\pi\)
0.264985 + 0.964253i \(0.414633\pi\)
\(168\) 2.07126e9 0.200605
\(169\) −3.90624e9 −0.368357
\(170\) 5.83545e9 0.535864
\(171\) 2.11539e9 0.189194
\(172\) 1.94628e10 1.69562
\(173\) 6.99208e9 0.593470 0.296735 0.954960i \(-0.404102\pi\)
0.296735 + 0.954960i \(0.404102\pi\)
\(174\) 1.70853e9 0.141303
\(175\) 1.36522e10 1.10035
\(176\) 2.27637e10 1.78828
\(177\) 7.70405e9 0.589983
\(178\) −2.26696e10 −1.69260
\(179\) −7.13352e8 −0.0519356 −0.0259678 0.999663i \(-0.508267\pi\)
−0.0259678 + 0.999663i \(0.508267\pi\)
\(180\) 1.98926e9 0.141243
\(181\) 3.57100e9 0.247307 0.123653 0.992325i \(-0.460539\pi\)
0.123653 + 0.992325i \(0.460539\pi\)
\(182\) 2.09695e10 1.41667
\(183\) −7.61832e9 −0.502145
\(184\) −4.30062e9 −0.276599
\(185\) 1.38442e8 0.00868948
\(186\) −1.42599e10 −0.873589
\(187\) −2.61734e10 −1.56521
\(188\) 9.23822e9 0.539359
\(189\) −2.48631e10 −1.41735
\(190\) −4.46188e9 −0.248386
\(191\) −2.72678e10 −1.48252 −0.741259 0.671219i \(-0.765771\pi\)
−0.741259 + 0.671219i \(0.765771\pi\)
\(192\) 9.90605e9 0.526072
\(193\) −2.27682e10 −1.18119 −0.590596 0.806968i \(-0.701107\pi\)
−0.590596 + 0.806968i \(0.701107\pi\)
\(194\) −2.72873e9 −0.138310
\(195\) 4.90766e9 0.243063
\(196\) 1.25959e10 0.609645
\(197\) −1.50614e9 −0.0712470
\(198\) −1.93830e10 −0.896245
\(199\) −1.23454e10 −0.558041 −0.279020 0.960285i \(-0.590010\pi\)
−0.279020 + 0.960285i \(0.590010\pi\)
\(200\) −3.80618e9 −0.168211
\(201\) −3.14419e10 −1.35871
\(202\) −4.07266e10 −1.72107
\(203\) −4.29773e9 −0.177626
\(204\) −1.59047e10 −0.642967
\(205\) 6.65685e9 0.263255
\(206\) 5.21819e10 2.01891
\(207\) 1.51241e10 0.572537
\(208\) −2.41457e10 −0.894449
\(209\) 2.00126e10 0.725513
\(210\) 1.53639e10 0.545148
\(211\) 2.25099e10 0.781811 0.390906 0.920431i \(-0.372162\pi\)
0.390906 + 0.920431i \(0.372162\pi\)
\(212\) 1.30694e10 0.444370
\(213\) −1.05871e10 −0.352428
\(214\) 1.97883e10 0.644981
\(215\) −2.48915e10 −0.794470
\(216\) 6.93176e9 0.216671
\(217\) 3.58700e10 1.09815
\(218\) −1.74676e10 −0.523816
\(219\) −2.18909e10 −0.643080
\(220\) 1.88194e10 0.541630
\(221\) 2.77624e10 0.782873
\(222\) −8.19709e8 −0.0226502
\(223\) 3.77449e10 1.02208 0.511042 0.859556i \(-0.329260\pi\)
0.511042 + 0.859556i \(0.329260\pi\)
\(224\) −6.57132e10 −1.74396
\(225\) 1.33853e10 0.348183
\(226\) 7.22752e10 1.84290
\(227\) −2.19230e10 −0.548005 −0.274003 0.961729i \(-0.588348\pi\)
−0.274003 + 0.961729i \(0.588348\pi\)
\(228\) 1.21610e10 0.298031
\(229\) 3.81665e10 0.917113 0.458557 0.888665i \(-0.348367\pi\)
0.458557 + 0.888665i \(0.348367\pi\)
\(230\) −3.19006e10 −0.751663
\(231\) −6.89107e10 −1.59233
\(232\) 1.19820e9 0.0271539
\(233\) −4.89012e10 −1.08697 −0.543486 0.839418i \(-0.682896\pi\)
−0.543486 + 0.839418i \(0.682896\pi\)
\(234\) 2.05597e10 0.448276
\(235\) −1.18150e10 −0.252713
\(236\) −3.13362e10 −0.657571
\(237\) 9.41129e9 0.193768
\(238\) 8.69129e10 1.75585
\(239\) −3.44674e10 −0.683310 −0.341655 0.939825i \(-0.610987\pi\)
−0.341655 + 0.939825i \(0.610987\pi\)
\(240\) −1.76910e10 −0.344193
\(241\) 2.04478e10 0.390454 0.195227 0.980758i \(-0.437456\pi\)
0.195227 + 0.980758i \(0.437456\pi\)
\(242\) −1.10745e11 −2.07565
\(243\) −4.16126e10 −0.765590
\(244\) 3.09875e10 0.559671
\(245\) −1.61092e10 −0.285645
\(246\) −3.94150e10 −0.686205
\(247\) −2.12276e10 −0.362881
\(248\) −1.00005e10 −0.167876
\(249\) −4.70506e10 −0.775655
\(250\) −6.18322e10 −1.00112
\(251\) 6.84964e10 1.08927 0.544635 0.838673i \(-0.316668\pi\)
0.544635 + 0.838673i \(0.316668\pi\)
\(252\) 2.96279e10 0.462806
\(253\) 1.43081e11 2.19554
\(254\) 1.27465e11 1.92149
\(255\) 2.03409e10 0.301258
\(256\) 8.42863e10 1.22653
\(257\) −5.87992e10 −0.840761 −0.420380 0.907348i \(-0.638103\pi\)
−0.420380 + 0.907348i \(0.638103\pi\)
\(258\) 1.47382e11 2.07088
\(259\) 2.06194e9 0.0284726
\(260\) −1.99619e10 −0.270908
\(261\) −4.21374e9 −0.0562063
\(262\) 1.63023e10 0.213744
\(263\) 1.08629e11 1.40005 0.700026 0.714118i \(-0.253172\pi\)
0.700026 + 0.714118i \(0.253172\pi\)
\(264\) 1.92121e10 0.243421
\(265\) −1.67148e10 −0.208207
\(266\) −6.64550e10 −0.813880
\(267\) −7.90202e10 −0.951562
\(268\) 1.27890e11 1.51436
\(269\) 1.62013e11 1.88654 0.943269 0.332029i \(-0.107733\pi\)
0.943269 + 0.332029i \(0.107733\pi\)
\(270\) 5.14175e10 0.588808
\(271\) −3.17031e10 −0.357059 −0.178530 0.983935i \(-0.557134\pi\)
−0.178530 + 0.983935i \(0.557134\pi\)
\(272\) −1.00077e11 −1.10860
\(273\) 7.30944e10 0.796438
\(274\) −1.06588e11 −1.14243
\(275\) 1.26632e11 1.33520
\(276\) 8.69457e10 0.901898
\(277\) 8.43229e10 0.860571 0.430286 0.902693i \(-0.358413\pi\)
0.430286 + 0.902693i \(0.358413\pi\)
\(278\) 1.68891e11 1.69592
\(279\) 3.51690e10 0.347489
\(280\) 1.07747e10 0.104760
\(281\) −5.71170e10 −0.546496 −0.273248 0.961944i \(-0.588098\pi\)
−0.273248 + 0.961944i \(0.588098\pi\)
\(282\) 6.99562e10 0.658726
\(283\) 1.60776e10 0.148998 0.0744991 0.997221i \(-0.476264\pi\)
0.0744991 + 0.997221i \(0.476264\pi\)
\(284\) 4.30632e10 0.392802
\(285\) −1.55530e10 −0.139640
\(286\) 1.94505e11 1.71903
\(287\) 9.91467e10 0.862600
\(288\) −6.44289e10 −0.551842
\(289\) −3.52060e9 −0.0296877
\(290\) 8.88783e9 0.0737912
\(291\) −9.51164e9 −0.0777565
\(292\) 8.90413e10 0.716752
\(293\) 7.53770e10 0.597496 0.298748 0.954332i \(-0.403431\pi\)
0.298748 + 0.954332i \(0.403431\pi\)
\(294\) 9.53822e10 0.744568
\(295\) 4.00767e10 0.308100
\(296\) −5.74864e8 −0.00435263
\(297\) −2.30619e11 −1.71986
\(298\) 1.47342e10 0.108231
\(299\) −1.51768e11 −1.09815
\(300\) 7.69498e10 0.548481
\(301\) −3.70732e11 −2.60322
\(302\) −9.99830e10 −0.691664
\(303\) −1.41962e11 −0.967568
\(304\) 7.65207e10 0.513864
\(305\) −3.96307e10 −0.262230
\(306\) 8.52142e10 0.555605
\(307\) −7.21713e10 −0.463705 −0.231852 0.972751i \(-0.574479\pi\)
−0.231852 + 0.972751i \(0.574479\pi\)
\(308\) 2.80295e11 1.77475
\(309\) 1.81892e11 1.13501
\(310\) −7.41801e10 −0.456205
\(311\) −1.35249e11 −0.819808 −0.409904 0.912129i \(-0.634438\pi\)
−0.409904 + 0.912129i \(0.634438\pi\)
\(312\) −2.03785e10 −0.121752
\(313\) 7.59766e10 0.447435 0.223718 0.974654i \(-0.428181\pi\)
0.223718 + 0.974654i \(0.428181\pi\)
\(314\) −1.45637e11 −0.845453
\(315\) −3.78919e10 −0.216845
\(316\) −3.82804e10 −0.215966
\(317\) −6.05302e10 −0.336671 −0.168335 0.985730i \(-0.553839\pi\)
−0.168335 + 0.985730i \(0.553839\pi\)
\(318\) 9.89678e10 0.542715
\(319\) −3.98640e10 −0.215537
\(320\) 5.15315e10 0.274725
\(321\) 6.89769e10 0.362603
\(322\) −4.75125e11 −2.46295
\(323\) −8.79823e10 −0.449763
\(324\) −7.00344e10 −0.353068
\(325\) −1.34320e11 −0.667827
\(326\) 2.34336e11 1.14911
\(327\) −6.08875e10 −0.294485
\(328\) −2.76418e10 −0.131867
\(329\) −1.75972e11 −0.828058
\(330\) 1.42509e11 0.661500
\(331\) 7.04537e9 0.0322610 0.0161305 0.999870i \(-0.494865\pi\)
0.0161305 + 0.999870i \(0.494865\pi\)
\(332\) 1.91379e11 0.864514
\(333\) 2.02164e9 0.00900959
\(334\) −1.64074e11 −0.721409
\(335\) −1.63562e11 −0.709545
\(336\) −2.63489e11 −1.12781
\(337\) −4.14690e11 −1.75142 −0.875708 0.482842i \(-0.839605\pi\)
−0.875708 + 0.482842i \(0.839605\pi\)
\(338\) 1.20316e11 0.501418
\(339\) 2.51932e11 1.03606
\(340\) −8.27365e10 −0.335770
\(341\) 3.32715e11 1.33253
\(342\) −6.51562e10 −0.257536
\(343\) 9.57501e10 0.373521
\(344\) 1.03359e11 0.397957
\(345\) −1.11197e11 −0.422578
\(346\) −2.15363e11 −0.807848
\(347\) 2.20530e11 0.816554 0.408277 0.912858i \(-0.366130\pi\)
0.408277 + 0.912858i \(0.366130\pi\)
\(348\) −2.42240e10 −0.0885399
\(349\) −3.60181e11 −1.29959 −0.649794 0.760110i \(-0.725145\pi\)
−0.649794 + 0.760110i \(0.725145\pi\)
\(350\) −4.20501e11 −1.49782
\(351\) 2.44621e11 0.860223
\(352\) −6.09528e11 −2.11618
\(353\) 2.08116e11 0.713379 0.356689 0.934223i \(-0.383905\pi\)
0.356689 + 0.934223i \(0.383905\pi\)
\(354\) −2.37293e11 −0.803101
\(355\) −5.50745e10 −0.184045
\(356\) 3.21415e11 1.06057
\(357\) 3.02956e11 0.987125
\(358\) 2.19720e10 0.0706962
\(359\) −3.47863e11 −1.10531 −0.552654 0.833411i \(-0.686385\pi\)
−0.552654 + 0.833411i \(0.686385\pi\)
\(360\) 1.05642e10 0.0331492
\(361\) −2.55415e11 −0.791524
\(362\) −1.09991e11 −0.336641
\(363\) −3.86028e11 −1.16691
\(364\) −2.97311e11 −0.887678
\(365\) −1.13877e11 −0.335829
\(366\) 2.34652e11 0.683534
\(367\) 1.48225e11 0.426506 0.213253 0.976997i \(-0.431594\pi\)
0.213253 + 0.976997i \(0.431594\pi\)
\(368\) 5.47091e11 1.55505
\(369\) 9.72089e10 0.272953
\(370\) −4.26415e9 −0.0118284
\(371\) −2.48949e11 −0.682225
\(372\) 2.02180e11 0.547387
\(373\) 2.46971e11 0.660628 0.330314 0.943871i \(-0.392845\pi\)
0.330314 + 0.943871i \(0.392845\pi\)
\(374\) 8.06168e11 2.13061
\(375\) −2.15531e11 −0.562819
\(376\) 4.90604e10 0.126586
\(377\) 4.22842e10 0.107806
\(378\) 7.65809e11 1.92933
\(379\) −9.63616e10 −0.239899 −0.119949 0.992780i \(-0.538273\pi\)
−0.119949 + 0.992780i \(0.538273\pi\)
\(380\) 6.32617e10 0.155638
\(381\) 4.44309e11 1.08025
\(382\) 8.39877e11 2.01804
\(383\) −7.12662e9 −0.0169235 −0.00846173 0.999964i \(-0.502693\pi\)
−0.00846173 + 0.999964i \(0.502693\pi\)
\(384\) 1.29134e11 0.303074
\(385\) −3.58475e11 −0.831546
\(386\) 7.01284e11 1.60787
\(387\) −3.63486e11 −0.823737
\(388\) 3.86886e10 0.0866643
\(389\) 5.22248e11 1.15639 0.578194 0.815900i \(-0.303758\pi\)
0.578194 + 0.815900i \(0.303758\pi\)
\(390\) −1.51161e11 −0.330864
\(391\) −6.29036e11 −1.36107
\(392\) 6.68917e10 0.143082
\(393\) 5.68256e10 0.120165
\(394\) 4.63907e10 0.0969834
\(395\) 4.89578e10 0.101189
\(396\) 2.74816e11 0.561584
\(397\) −7.85090e11 −1.58622 −0.793108 0.609081i \(-0.791538\pi\)
−0.793108 + 0.609081i \(0.791538\pi\)
\(398\) 3.80251e11 0.759620
\(399\) −2.31645e11 −0.457556
\(400\) 4.84193e11 0.945689
\(401\) −1.46552e11 −0.283035 −0.141518 0.989936i \(-0.545198\pi\)
−0.141518 + 0.989936i \(0.545198\pi\)
\(402\) 9.68445e11 1.84951
\(403\) −3.52915e11 −0.666496
\(404\) 5.77433e11 1.07841
\(405\) 8.95687e10 0.165428
\(406\) 1.32375e11 0.241790
\(407\) 1.91257e10 0.0345496
\(408\) −8.44632e10 −0.150903
\(409\) −6.63688e11 −1.17276 −0.586380 0.810036i \(-0.699447\pi\)
−0.586380 + 0.810036i \(0.699447\pi\)
\(410\) −2.05038e11 −0.358349
\(411\) −3.71537e11 −0.642265
\(412\) −7.39848e11 −1.26504
\(413\) 5.96899e11 1.00955
\(414\) −4.65839e11 −0.779353
\(415\) −2.44759e11 −0.405062
\(416\) 6.46533e11 1.05845
\(417\) 5.88711e11 0.953433
\(418\) −6.16409e11 −0.987587
\(419\) 7.23699e11 1.14708 0.573541 0.819177i \(-0.305569\pi\)
0.573541 + 0.819177i \(0.305569\pi\)
\(420\) −2.17833e11 −0.341588
\(421\) −1.64258e11 −0.254834 −0.127417 0.991849i \(-0.540669\pi\)
−0.127417 + 0.991849i \(0.540669\pi\)
\(422\) −6.93328e11 −1.06422
\(423\) −1.72532e11 −0.262023
\(424\) 6.94064e10 0.104292
\(425\) −5.56717e11 −0.827722
\(426\) 3.26095e11 0.479734
\(427\) −5.90257e11 −0.859243
\(428\) −2.80564e11 −0.404143
\(429\) 6.77993e11 0.966423
\(430\) 7.66683e11 1.08145
\(431\) 4.73374e10 0.0660780 0.0330390 0.999454i \(-0.489481\pi\)
0.0330390 + 0.999454i \(0.489481\pi\)
\(432\) −8.81804e11 −1.21813
\(433\) 2.90866e11 0.397647 0.198823 0.980035i \(-0.436288\pi\)
0.198823 + 0.980035i \(0.436288\pi\)
\(434\) −1.10483e12 −1.49484
\(435\) 3.09806e10 0.0414848
\(436\) 2.47660e11 0.328221
\(437\) 4.80971e11 0.630888
\(438\) 6.74263e11 0.875379
\(439\) −1.25818e12 −1.61679 −0.808395 0.588640i \(-0.799664\pi\)
−0.808395 + 0.588640i \(0.799664\pi\)
\(440\) 9.99420e10 0.127119
\(441\) −2.35240e11 −0.296168
\(442\) −8.55111e11 −1.06567
\(443\) −7.88145e11 −0.972276 −0.486138 0.873882i \(-0.661595\pi\)
−0.486138 + 0.873882i \(0.661595\pi\)
\(444\) 1.16220e10 0.0141925
\(445\) −4.11065e11 −0.496925
\(446\) −1.16258e12 −1.39129
\(447\) 5.13596e10 0.0608468
\(448\) 7.67508e11 0.900185
\(449\) 1.56886e12 1.82169 0.910847 0.412743i \(-0.135429\pi\)
0.910847 + 0.412743i \(0.135429\pi\)
\(450\) −4.12282e11 −0.473956
\(451\) 9.19643e11 1.04671
\(452\) −1.02474e12 −1.15475
\(453\) −3.48515e11 −0.388847
\(454\) 6.75253e11 0.745959
\(455\) 3.80239e11 0.415915
\(456\) 6.45819e10 0.0699470
\(457\) −1.33773e11 −0.143465 −0.0717326 0.997424i \(-0.522853\pi\)
−0.0717326 + 0.997424i \(0.522853\pi\)
\(458\) −1.17557e12 −1.24840
\(459\) 1.01388e12 1.06618
\(460\) 4.52294e11 0.470989
\(461\) 5.43676e11 0.560643 0.280321 0.959906i \(-0.409559\pi\)
0.280321 + 0.959906i \(0.409559\pi\)
\(462\) 2.12252e12 2.16752
\(463\) −1.20020e12 −1.21378 −0.606890 0.794786i \(-0.707583\pi\)
−0.606890 + 0.794786i \(0.707583\pi\)
\(464\) −1.52425e11 −0.152660
\(465\) −2.58573e11 −0.256475
\(466\) 1.50621e12 1.47962
\(467\) 1.94869e12 1.89590 0.947951 0.318415i \(-0.103151\pi\)
0.947951 + 0.318415i \(0.103151\pi\)
\(468\) −2.91501e11 −0.280888
\(469\) −2.43608e12 −2.32495
\(470\) 3.63914e11 0.344000
\(471\) −5.07654e11 −0.475306
\(472\) −1.66414e11 −0.154330
\(473\) −3.43875e12 −3.15883
\(474\) −2.89878e11 −0.263762
\(475\) 4.25675e11 0.383669
\(476\) −1.23227e12 −1.10021
\(477\) −2.44084e11 −0.215877
\(478\) 1.06163e12 0.930140
\(479\) 1.42572e12 1.23744 0.618719 0.785612i \(-0.287652\pi\)
0.618719 + 0.785612i \(0.287652\pi\)
\(480\) 4.73700e11 0.407303
\(481\) −2.02868e10 −0.0172807
\(482\) −6.29813e11 −0.531496
\(483\) −1.65616e12 −1.38465
\(484\) 1.57017e12 1.30059
\(485\) −4.94798e10 −0.0406060
\(486\) 1.28171e12 1.04214
\(487\) −2.55347e11 −0.205708 −0.102854 0.994696i \(-0.532797\pi\)
−0.102854 + 0.994696i \(0.532797\pi\)
\(488\) 1.64562e11 0.131353
\(489\) 8.16835e11 0.646018
\(490\) 4.96180e11 0.388828
\(491\) −1.86365e11 −0.144710 −0.0723548 0.997379i \(-0.523051\pi\)
−0.0723548 + 0.997379i \(0.523051\pi\)
\(492\) 5.58836e11 0.429973
\(493\) 1.75256e11 0.133617
\(494\) 6.53832e11 0.493963
\(495\) −3.51469e11 −0.263126
\(496\) 1.27218e12 0.943803
\(497\) −8.20277e11 −0.603055
\(498\) 1.44921e12 1.05584
\(499\) 1.68039e12 1.21327 0.606634 0.794981i \(-0.292519\pi\)
0.606634 + 0.794981i \(0.292519\pi\)
\(500\) 8.76672e11 0.627295
\(501\) −5.71921e11 −0.405570
\(502\) −2.10976e12 −1.48274
\(503\) 2.45247e12 1.70823 0.854116 0.520082i \(-0.174099\pi\)
0.854116 + 0.520082i \(0.174099\pi\)
\(504\) 1.57342e11 0.108619
\(505\) −7.38492e11 −0.505283
\(506\) −4.40706e12 −2.98863
\(507\) 4.19392e11 0.281893
\(508\) −1.80723e12 −1.20400
\(509\) −1.43674e12 −0.948740 −0.474370 0.880326i \(-0.657324\pi\)
−0.474370 + 0.880326i \(0.657324\pi\)
\(510\) −6.26520e11 −0.410081
\(511\) −1.69608e12 −1.10040
\(512\) −1.98029e12 −1.27355
\(513\) −7.75232e11 −0.494201
\(514\) 1.81108e12 1.14447
\(515\) 9.46209e11 0.592727
\(516\) −2.08961e12 −1.29760
\(517\) −1.63224e12 −1.00479
\(518\) −6.35099e10 −0.0387577
\(519\) −7.50701e11 −0.454165
\(520\) −1.06010e11 −0.0635814
\(521\) 2.93064e12 1.74258 0.871289 0.490771i \(-0.163285\pi\)
0.871289 + 0.490771i \(0.163285\pi\)
\(522\) 1.29788e11 0.0765096
\(523\) 6.67888e11 0.390343 0.195171 0.980769i \(-0.437474\pi\)
0.195171 + 0.980769i \(0.437474\pi\)
\(524\) −2.31138e11 −0.133931
\(525\) −1.46576e12 −0.842063
\(526\) −3.34588e12 −1.90579
\(527\) −1.46273e12 −0.826071
\(528\) −2.44402e12 −1.36852
\(529\) 1.63759e12 0.909188
\(530\) 5.14833e11 0.283416
\(531\) 5.85233e11 0.319451
\(532\) 9.42215e11 0.509974
\(533\) −9.75476e11 −0.523533
\(534\) 2.43390e12 1.29529
\(535\) 3.58820e11 0.189358
\(536\) 6.79172e11 0.355417
\(537\) 7.65886e10 0.0397448
\(538\) −4.99018e12 −2.56801
\(539\) −2.22549e12 −1.13573
\(540\) −7.29010e11 −0.368945
\(541\) −1.14433e12 −0.574335 −0.287168 0.957880i \(-0.592714\pi\)
−0.287168 + 0.957880i \(0.592714\pi\)
\(542\) 9.76490e11 0.486039
\(543\) −3.83398e11 −0.189257
\(544\) 2.67970e12 1.31187
\(545\) −3.16738e11 −0.153786
\(546\) −2.25138e12 −1.08413
\(547\) −2.84546e12 −1.35897 −0.679484 0.733691i \(-0.737796\pi\)
−0.679484 + 0.733691i \(0.737796\pi\)
\(548\) 1.51123e12 0.715843
\(549\) −5.78721e11 −0.271890
\(550\) −3.90039e12 −1.81751
\(551\) −1.34004e11 −0.0619347
\(552\) 4.61733e11 0.211673
\(553\) 7.29174e11 0.331565
\(554\) −2.59724e12 −1.17143
\(555\) −1.48637e10 −0.00664980
\(556\) −2.39458e12 −1.06266
\(557\) −3.14541e11 −0.138461 −0.0692306 0.997601i \(-0.522054\pi\)
−0.0692306 + 0.997601i \(0.522054\pi\)
\(558\) −1.08324e12 −0.473011
\(559\) 3.64752e12 1.57996
\(560\) −1.37068e12 −0.588965
\(561\) 2.81009e12 1.19781
\(562\) 1.75927e12 0.743906
\(563\) 1.85209e12 0.776916 0.388458 0.921466i \(-0.373008\pi\)
0.388458 + 0.921466i \(0.373008\pi\)
\(564\) −9.91856e11 −0.412755
\(565\) 1.31056e12 0.541051
\(566\) −4.95206e11 −0.202821
\(567\) 1.33403e12 0.542053
\(568\) 2.28691e11 0.0921896
\(569\) 2.27961e12 0.911709 0.455854 0.890054i \(-0.349334\pi\)
0.455854 + 0.890054i \(0.349334\pi\)
\(570\) 4.79047e11 0.190082
\(571\) −3.39014e11 −0.133461 −0.0667307 0.997771i \(-0.521257\pi\)
−0.0667307 + 0.997771i \(0.521257\pi\)
\(572\) −2.75774e12 −1.07714
\(573\) 2.92759e12 1.13453
\(574\) −3.05382e12 −1.17419
\(575\) 3.04339e12 1.16106
\(576\) 7.52508e11 0.284846
\(577\) −1.62294e11 −0.0609552 −0.0304776 0.999535i \(-0.509703\pi\)
−0.0304776 + 0.999535i \(0.509703\pi\)
\(578\) 1.08438e11 0.0404117
\(579\) 2.44449e12 0.903930
\(580\) −1.26014e11 −0.0462373
\(581\) −3.64542e12 −1.32726
\(582\) 2.92969e11 0.105844
\(583\) −2.30915e12 −0.827834
\(584\) 4.72862e11 0.168220
\(585\) 3.72807e11 0.131608
\(586\) −2.32169e12 −0.813327
\(587\) −3.44991e12 −1.19932 −0.599661 0.800254i \(-0.704698\pi\)
−0.599661 + 0.800254i \(0.704698\pi\)
\(588\) −1.35235e12 −0.466543
\(589\) 1.11843e12 0.382904
\(590\) −1.23440e12 −0.419395
\(591\) 1.61706e11 0.0545232
\(592\) 7.31296e10 0.0244707
\(593\) 3.62453e12 1.20366 0.601832 0.798623i \(-0.294438\pi\)
0.601832 + 0.798623i \(0.294438\pi\)
\(594\) 7.10332e12 2.34111
\(595\) 1.57598e12 0.515496
\(596\) −2.08905e11 −0.0678174
\(597\) 1.32546e12 0.427052
\(598\) 4.67462e12 1.49483
\(599\) −5.40443e12 −1.71526 −0.857628 0.514270i \(-0.828063\pi\)
−0.857628 + 0.514270i \(0.828063\pi\)
\(600\) 4.08649e11 0.128727
\(601\) 8.26860e11 0.258522 0.129261 0.991611i \(-0.458740\pi\)
0.129261 + 0.991611i \(0.458740\pi\)
\(602\) 1.14189e13 3.54357
\(603\) −2.38847e12 −0.735684
\(604\) 1.41758e12 0.433394
\(605\) −2.00813e12 −0.609385
\(606\) 4.37259e12 1.31708
\(607\) −2.03173e12 −0.607458 −0.303729 0.952759i \(-0.598232\pi\)
−0.303729 + 0.952759i \(0.598232\pi\)
\(608\) −2.04894e12 −0.608084
\(609\) 4.61424e11 0.135932
\(610\) 1.22067e12 0.356955
\(611\) 1.73133e12 0.502569
\(612\) −1.20819e12 −0.348140
\(613\) −5.07732e12 −1.45232 −0.726160 0.687526i \(-0.758697\pi\)
−0.726160 + 0.687526i \(0.758697\pi\)
\(614\) 2.22295e12 0.631208
\(615\) −7.14708e11 −0.201461
\(616\) 1.48853e12 0.416528
\(617\) 6.49891e12 1.80533 0.902667 0.430341i \(-0.141607\pi\)
0.902667 + 0.430341i \(0.141607\pi\)
\(618\) −5.60248e12 −1.54501
\(619\) −2.35132e12 −0.643731 −0.321866 0.946785i \(-0.604310\pi\)
−0.321866 + 0.946785i \(0.604310\pi\)
\(620\) 1.05174e12 0.285856
\(621\) −5.54258e12 −1.49555
\(622\) 4.16581e12 1.11594
\(623\) −6.12238e12 −1.62826
\(624\) 2.59239e12 0.684495
\(625\) 2.08425e12 0.546374
\(626\) −2.34016e12 −0.609061
\(627\) −2.14864e12 −0.555213
\(628\) 2.06488e12 0.529757
\(629\) −8.40832e10 −0.0214181
\(630\) 1.16711e12 0.295175
\(631\) 7.07159e12 1.77576 0.887881 0.460073i \(-0.152177\pi\)
0.887881 + 0.460073i \(0.152177\pi\)
\(632\) −2.03292e11 −0.0506866
\(633\) −2.41676e12 −0.598297
\(634\) 1.86440e12 0.458286
\(635\) 2.31131e12 0.564126
\(636\) −1.40319e12 −0.340063
\(637\) 2.36060e12 0.568060
\(638\) 1.22785e12 0.293395
\(639\) −8.04246e11 −0.190825
\(640\) 6.71757e11 0.158271
\(641\) −4.16442e12 −0.974301 −0.487150 0.873318i \(-0.661964\pi\)
−0.487150 + 0.873318i \(0.661964\pi\)
\(642\) −2.12456e12 −0.493585
\(643\) 3.01682e12 0.695986 0.347993 0.937497i \(-0.386863\pi\)
0.347993 + 0.937497i \(0.386863\pi\)
\(644\) 6.73644e12 1.54328
\(645\) 2.67246e12 0.607984
\(646\) 2.70995e12 0.612230
\(647\) 5.04362e12 1.13155 0.565774 0.824561i \(-0.308578\pi\)
0.565774 + 0.824561i \(0.308578\pi\)
\(648\) −3.71924e11 −0.0828642
\(649\) 5.53659e12 1.22501
\(650\) 4.13719e12 0.909065
\(651\) −3.85116e12 −0.840384
\(652\) −3.32248e12 −0.720026
\(653\) 6.48263e12 1.39522 0.697609 0.716479i \(-0.254247\pi\)
0.697609 + 0.716479i \(0.254247\pi\)
\(654\) 1.87540e12 0.400861
\(655\) 2.95608e11 0.0627524
\(656\) 3.51638e12 0.741358
\(657\) −1.66293e12 −0.348201
\(658\) 5.42011e12 1.12718
\(659\) −1.44961e12 −0.299409 −0.149705 0.988731i \(-0.547832\pi\)
−0.149705 + 0.988731i \(0.547832\pi\)
\(660\) −2.02053e12 −0.414494
\(661\) 8.49772e12 1.73139 0.865696 0.500569i \(-0.166876\pi\)
0.865696 + 0.500569i \(0.166876\pi\)
\(662\) −2.17005e11 −0.0439146
\(663\) −2.98069e12 −0.599110
\(664\) 1.01633e12 0.202899
\(665\) −1.20502e12 −0.238945
\(666\) −6.22687e10 −0.0122641
\(667\) −9.58069e11 −0.187426
\(668\) 2.32629e12 0.452032
\(669\) −4.05246e12 −0.782170
\(670\) 5.03787e12 0.965852
\(671\) −5.47498e12 −1.04263
\(672\) 7.05526e12 1.33460
\(673\) 7.67840e11 0.144279 0.0721394 0.997395i \(-0.477017\pi\)
0.0721394 + 0.997395i \(0.477017\pi\)
\(674\) 1.27729e13 2.38407
\(675\) −4.90536e12 −0.909502
\(676\) −1.70588e12 −0.314186
\(677\) 5.59080e12 1.02288 0.511440 0.859319i \(-0.329112\pi\)
0.511440 + 0.859319i \(0.329112\pi\)
\(678\) −7.75979e12 −1.41031
\(679\) −7.36949e11 −0.133053
\(680\) −4.39380e11 −0.0788043
\(681\) 2.35376e12 0.419372
\(682\) −1.02480e13 −1.81388
\(683\) 9.35401e12 1.64477 0.822384 0.568932i \(-0.192643\pi\)
0.822384 + 0.568932i \(0.192643\pi\)
\(684\) 9.23801e11 0.161371
\(685\) −1.93275e12 −0.335403
\(686\) −2.94920e12 −0.508448
\(687\) −4.09773e12 −0.701839
\(688\) −1.31485e13 −2.23733
\(689\) 2.44934e12 0.414059
\(690\) 3.42498e12 0.575225
\(691\) −8.45371e11 −0.141058 −0.0705288 0.997510i \(-0.522469\pi\)
−0.0705288 + 0.997510i \(0.522469\pi\)
\(692\) 3.05348e12 0.506194
\(693\) −5.23476e12 −0.862179
\(694\) −6.79255e12 −1.11152
\(695\) 3.06249e12 0.497901
\(696\) −1.28644e11 −0.0207801
\(697\) −4.04307e12 −0.648879
\(698\) 1.10939e13 1.76904
\(699\) 5.25025e12 0.831827
\(700\) 5.96196e12 0.938530
\(701\) 2.65058e11 0.0414581 0.0207291 0.999785i \(-0.493401\pi\)
0.0207291 + 0.999785i \(0.493401\pi\)
\(702\) −7.53457e12 −1.17096
\(703\) 6.42914e10 0.00992782
\(704\) 7.11908e12 1.09231
\(705\) 1.26851e12 0.193394
\(706\) −6.41021e12 −0.971071
\(707\) −1.09991e13 −1.65565
\(708\) 3.36440e12 0.503220
\(709\) −5.43318e12 −0.807507 −0.403753 0.914868i \(-0.632295\pi\)
−0.403753 + 0.914868i \(0.632295\pi\)
\(710\) 1.69635e12 0.250527
\(711\) 7.14923e11 0.104917
\(712\) 1.70690e12 0.248914
\(713\) 7.99629e12 1.15874
\(714\) −9.33135e12 −1.34370
\(715\) 3.52694e12 0.504685
\(716\) −3.11524e11 −0.0442979
\(717\) 3.70057e12 0.522917
\(718\) 1.07145e13 1.50458
\(719\) 1.01516e13 1.41663 0.708315 0.705896i \(-0.249456\pi\)
0.708315 + 0.705896i \(0.249456\pi\)
\(720\) −1.34389e12 −0.186366
\(721\) 1.40928e13 1.94217
\(722\) 7.86705e12 1.07744
\(723\) −2.19536e12 −0.298802
\(724\) 1.55947e12 0.210938
\(725\) −8.47921e11 −0.113982
\(726\) 1.18901e13 1.58843
\(727\) −4.62553e12 −0.614125 −0.307062 0.951689i \(-0.599346\pi\)
−0.307062 + 0.951689i \(0.599346\pi\)
\(728\) −1.57890e12 −0.208336
\(729\) 7.62428e12 0.999827
\(730\) 3.50753e12 0.457140
\(731\) 1.51180e13 1.95824
\(732\) −3.32696e12 −0.428300
\(733\) 8.44064e12 1.07996 0.539980 0.841678i \(-0.318432\pi\)
0.539980 + 0.841678i \(0.318432\pi\)
\(734\) −4.56549e12 −0.580571
\(735\) 1.72956e12 0.218596
\(736\) −1.46491e13 −1.84018
\(737\) −2.25961e13 −2.82117
\(738\) −2.99414e12 −0.371551
\(739\) −7.44300e12 −0.918011 −0.459006 0.888433i \(-0.651794\pi\)
−0.459006 + 0.888433i \(0.651794\pi\)
\(740\) 6.04581e10 0.00741160
\(741\) 2.27909e12 0.277702
\(742\) 7.66789e12 0.928664
\(743\) −7.73544e12 −0.931184 −0.465592 0.885000i \(-0.654158\pi\)
−0.465592 + 0.885000i \(0.654158\pi\)
\(744\) 1.07369e12 0.128470
\(745\) 2.67174e11 0.0317754
\(746\) −7.60698e12 −0.899265
\(747\) −3.57417e12 −0.419984
\(748\) −1.14300e13 −1.33503
\(749\) 5.34424e12 0.620466
\(750\) 6.63858e12 0.766124
\(751\) 1.28187e13 1.47050 0.735248 0.677798i \(-0.237066\pi\)
0.735248 + 0.677798i \(0.237066\pi\)
\(752\) −6.24108e12 −0.711671
\(753\) −7.35407e12 −0.833586
\(754\) −1.30240e12 −0.146748
\(755\) −1.81298e12 −0.203064
\(756\) −1.08578e13 −1.20891
\(757\) −2.72804e12 −0.301939 −0.150969 0.988538i \(-0.548239\pi\)
−0.150969 + 0.988538i \(0.548239\pi\)
\(758\) 2.96804e12 0.326556
\(759\) −1.53619e13 −1.68018
\(760\) 3.35957e11 0.0365277
\(761\) 1.63243e13 1.76443 0.882213 0.470850i \(-0.156053\pi\)
0.882213 + 0.470850i \(0.156053\pi\)
\(762\) −1.36852e13 −1.47046
\(763\) −4.71748e12 −0.503906
\(764\) −1.19080e13 −1.26450
\(765\) 1.54518e12 0.163118
\(766\) 2.19507e11 0.0230367
\(767\) −5.87272e12 −0.612717
\(768\) −9.04936e12 −0.938625
\(769\) −1.14830e13 −1.18410 −0.592050 0.805901i \(-0.701681\pi\)
−0.592050 + 0.805901i \(0.701681\pi\)
\(770\) 1.10414e13 1.13192
\(771\) 6.31294e12 0.643409
\(772\) −9.94297e12 −1.00748
\(773\) −6.09952e12 −0.614452 −0.307226 0.951637i \(-0.599401\pi\)
−0.307226 + 0.951637i \(0.599401\pi\)
\(774\) 1.11958e13 1.12129
\(775\) 7.07697e12 0.704677
\(776\) 2.05459e11 0.0203399
\(777\) −2.21379e11 −0.0217892
\(778\) −1.60858e13 −1.57411
\(779\) 3.09140e12 0.300771
\(780\) 2.14320e12 0.207318
\(781\) −7.60855e12 −0.731766
\(782\) 1.93750e13 1.85272
\(783\) 1.54422e12 0.146819
\(784\) −8.50944e12 −0.804412
\(785\) −2.64083e12 −0.248214
\(786\) −1.75029e12 −0.163572
\(787\) −2.56411e12 −0.238260 −0.119130 0.992879i \(-0.538010\pi\)
−0.119130 + 0.992879i \(0.538010\pi\)
\(788\) −6.57738e11 −0.0607694
\(789\) −1.16629e13 −1.07142
\(790\) −1.50795e12 −0.137742
\(791\) 1.95194e13 1.77285
\(792\) 1.45944e12 0.131802
\(793\) 5.80737e12 0.521495
\(794\) 2.41816e13 2.15920
\(795\) 1.79457e12 0.159334
\(796\) −5.39129e12 −0.475975
\(797\) 4.49245e12 0.394385 0.197192 0.980365i \(-0.436818\pi\)
0.197192 + 0.980365i \(0.436818\pi\)
\(798\) 7.13490e12 0.622838
\(799\) 7.17589e12 0.622896
\(800\) −1.29649e13 −1.11909
\(801\) −6.00272e12 −0.515231
\(802\) 4.51394e12 0.385275
\(803\) −1.57321e13 −1.33526
\(804\) −1.37308e13 −1.15890
\(805\) −8.61539e12 −0.723092
\(806\) 1.08702e13 0.907252
\(807\) −1.73945e13 −1.44371
\(808\) 3.06651e12 0.253101
\(809\) −1.08069e13 −0.887015 −0.443508 0.896271i \(-0.646266\pi\)
−0.443508 + 0.896271i \(0.646266\pi\)
\(810\) −2.75881e12 −0.225185
\(811\) 1.18070e13 0.958394 0.479197 0.877707i \(-0.340928\pi\)
0.479197 + 0.877707i \(0.340928\pi\)
\(812\) −1.87684e12 −0.151505
\(813\) 3.40379e12 0.273247
\(814\) −5.89092e11 −0.0470298
\(815\) 4.24920e12 0.337363
\(816\) 1.07447e13 0.848380
\(817\) −1.15594e13 −0.907690
\(818\) 2.04423e13 1.59639
\(819\) 5.55257e12 0.431238
\(820\) 2.90708e12 0.224540
\(821\) −1.91472e13 −1.47082 −0.735412 0.677620i \(-0.763011\pi\)
−0.735412 + 0.677620i \(0.763011\pi\)
\(822\) 1.14437e13 0.874268
\(823\) −1.24811e13 −0.948315 −0.474157 0.880440i \(-0.657247\pi\)
−0.474157 + 0.880440i \(0.657247\pi\)
\(824\) −3.92903e12 −0.296902
\(825\) −1.35957e13 −1.02179
\(826\) −1.83851e13 −1.37422
\(827\) −5.92115e12 −0.440181 −0.220090 0.975479i \(-0.570635\pi\)
−0.220090 + 0.975479i \(0.570635\pi\)
\(828\) 6.60478e12 0.488340
\(829\) 3.80683e11 0.0279942 0.0139971 0.999902i \(-0.495544\pi\)
0.0139971 + 0.999902i \(0.495544\pi\)
\(830\) 7.53882e12 0.551382
\(831\) −9.05328e12 −0.658569
\(832\) −7.55129e12 −0.546344
\(833\) 9.78401e12 0.704068
\(834\) −1.81329e13 −1.29784
\(835\) −2.97515e12 −0.211797
\(836\) 8.73960e12 0.618818
\(837\) −1.28885e13 −0.907688
\(838\) −2.22907e13 −1.56144
\(839\) −1.02535e13 −0.714403 −0.357202 0.934027i \(-0.616269\pi\)
−0.357202 + 0.934027i \(0.616269\pi\)
\(840\) −1.15682e12 −0.0801697
\(841\) −1.42402e13 −0.981600
\(842\) 5.05932e12 0.346887
\(843\) 6.13234e12 0.418217
\(844\) 9.83018e12 0.666838
\(845\) 2.18169e12 0.147210
\(846\) 5.31418e12 0.356672
\(847\) −2.99089e13 −1.99676
\(848\) −8.82933e12 −0.586336
\(849\) −1.72616e12 −0.114024
\(850\) 1.71475e13 1.12672
\(851\) 4.59656e11 0.0300435
\(852\) −4.62346e12 −0.300600
\(853\) −2.15574e13 −1.39420 −0.697101 0.716973i \(-0.745527\pi\)
−0.697101 + 0.716973i \(0.745527\pi\)
\(854\) 1.81805e13 1.16962
\(855\) −1.18147e12 −0.0756093
\(856\) −1.48996e12 −0.0948512
\(857\) −2.58281e13 −1.63560 −0.817802 0.575499i \(-0.804808\pi\)
−0.817802 + 0.575499i \(0.804808\pi\)
\(858\) −2.08829e13 −1.31552
\(859\) −1.28740e13 −0.806761 −0.403381 0.915032i \(-0.632165\pi\)
−0.403381 + 0.915032i \(0.632165\pi\)
\(860\) −1.08702e13 −0.677635
\(861\) −1.06448e13 −0.660122
\(862\) −1.45804e12 −0.0899472
\(863\) −2.84758e13 −1.74754 −0.873771 0.486337i \(-0.838333\pi\)
−0.873771 + 0.486337i \(0.838333\pi\)
\(864\) 2.36114e13 1.44149
\(865\) −3.90517e12 −0.237174
\(866\) −8.95898e12 −0.541288
\(867\) 3.77987e11 0.0227191
\(868\) 1.56646e13 0.936658
\(869\) 6.76352e12 0.402331
\(870\) −9.54236e11 −0.0564702
\(871\) 2.39679e13 1.41107
\(872\) 1.31522e12 0.0770326
\(873\) −7.22546e11 −0.0421019
\(874\) −1.48144e13 −0.858782
\(875\) −1.66990e13 −0.963064
\(876\) −9.55987e12 −0.548509
\(877\) −2.34209e12 −0.133692 −0.0668461 0.997763i \(-0.521294\pi\)
−0.0668461 + 0.997763i \(0.521294\pi\)
\(878\) 3.87534e13 2.20082
\(879\) −8.09281e12 −0.457246
\(880\) −1.27138e13 −0.714668
\(881\) 2.98326e13 1.66840 0.834198 0.551465i \(-0.185931\pi\)
0.834198 + 0.551465i \(0.185931\pi\)
\(882\) 7.24565e12 0.403152
\(883\) −2.39921e13 −1.32815 −0.664073 0.747668i \(-0.731174\pi\)
−0.664073 + 0.747668i \(0.731174\pi\)
\(884\) 1.21240e13 0.667744
\(885\) −4.30281e12 −0.235780
\(886\) 2.42757e13 1.32349
\(887\) −4.45226e12 −0.241504 −0.120752 0.992683i \(-0.538531\pi\)
−0.120752 + 0.992683i \(0.538531\pi\)
\(888\) 6.17199e10 0.00333094
\(889\) 3.44245e13 1.84846
\(890\) 1.26612e13 0.676427
\(891\) 1.23739e13 0.657745
\(892\) 1.64834e13 0.871776
\(893\) −5.48680e12 −0.288727
\(894\) −1.58193e12 −0.0828263
\(895\) 3.98416e11 0.0207555
\(896\) 1.00051e13 0.518604
\(897\) 1.62945e13 0.840379
\(898\) −4.83225e13 −2.47974
\(899\) −2.22785e12 −0.113754
\(900\) 5.84544e12 0.296979
\(901\) 1.01518e13 0.513195
\(902\) −2.83260e13 −1.42481
\(903\) 3.98034e13 1.99217
\(904\) −5.44195e12 −0.271017
\(905\) −1.99445e12 −0.0988335
\(906\) 1.07346e13 0.529310
\(907\) −3.69618e12 −0.181351 −0.0906755 0.995880i \(-0.528903\pi\)
−0.0906755 + 0.995880i \(0.528903\pi\)
\(908\) −9.57391e12 −0.467415
\(909\) −1.07841e13 −0.523897
\(910\) −1.17118e13 −0.566155
\(911\) −3.52735e13 −1.69674 −0.848372 0.529401i \(-0.822417\pi\)
−0.848372 + 0.529401i \(0.822417\pi\)
\(912\) −8.21561e12 −0.393245
\(913\) −3.38134e13 −1.61054
\(914\) 4.12036e12 0.195289
\(915\) 4.25493e12 0.200677
\(916\) 1.66675e13 0.782242
\(917\) 4.40277e12 0.205619
\(918\) −3.12287e13 −1.45131
\(919\) 3.12212e13 1.44387 0.721937 0.691958i \(-0.243252\pi\)
0.721937 + 0.691958i \(0.243252\pi\)
\(920\) 2.40195e12 0.110540
\(921\) 7.74863e12 0.354860
\(922\) −1.67458e13 −0.763162
\(923\) 8.07047e12 0.366009
\(924\) −3.00937e13 −1.35816
\(925\) 4.06810e11 0.0182707
\(926\) 3.69675e13 1.65223
\(927\) 1.38174e13 0.614563
\(928\) 4.08138e12 0.180651
\(929\) 8.31874e12 0.366426 0.183213 0.983073i \(-0.441350\pi\)
0.183213 + 0.983073i \(0.441350\pi\)
\(930\) 7.96431e12 0.349120
\(931\) −7.48101e12 −0.326352
\(932\) −2.13554e13 −0.927121
\(933\) 1.45209e13 0.627374
\(934\) −6.00216e13 −2.58075
\(935\) 1.46182e13 0.625519
\(936\) −1.54804e12 −0.0659237
\(937\) 1.26330e13 0.535400 0.267700 0.963502i \(-0.413736\pi\)
0.267700 + 0.963502i \(0.413736\pi\)
\(938\) 7.50338e13 3.16478
\(939\) −8.15719e12 −0.342409
\(940\) −5.15966e12 −0.215549
\(941\) −2.21477e13 −0.920822 −0.460411 0.887706i \(-0.652298\pi\)
−0.460411 + 0.887706i \(0.652298\pi\)
\(942\) 1.56363e13 0.647000
\(943\) 2.21022e13 0.910191
\(944\) 2.11699e13 0.867650
\(945\) 1.38863e13 0.566428
\(946\) 1.05917e14 4.29988
\(947\) −3.32051e13 −1.34162 −0.670811 0.741628i \(-0.734054\pi\)
−0.670811 + 0.741628i \(0.734054\pi\)
\(948\) 4.10996e12 0.165272
\(949\) 1.66872e13 0.667861
\(950\) −1.31112e13 −0.522261
\(951\) 6.49879e12 0.257644
\(952\) −6.54410e12 −0.258216
\(953\) 3.53606e13 1.38868 0.694339 0.719648i \(-0.255697\pi\)
0.694339 + 0.719648i \(0.255697\pi\)
\(954\) 7.51803e12 0.293857
\(955\) 1.52294e13 0.592472
\(956\) −1.50521e13 −0.582822
\(957\) 4.27998e12 0.164944
\(958\) −4.39136e13 −1.68444
\(959\) −2.87862e13 −1.09901
\(960\) −5.53266e12 −0.210239
\(961\) −7.84539e12 −0.296729
\(962\) 6.24856e11 0.0235230
\(963\) 5.23979e12 0.196334
\(964\) 8.92965e12 0.333033
\(965\) 1.27163e13 0.472050
\(966\) 5.10115e13 1.88483
\(967\) 1.15684e13 0.425455 0.212728 0.977112i \(-0.431765\pi\)
0.212728 + 0.977112i \(0.431765\pi\)
\(968\) 8.33852e12 0.305246
\(969\) 9.44617e12 0.344190
\(970\) 1.52403e12 0.0552740
\(971\) 1.44402e13 0.521299 0.260650 0.965433i \(-0.416063\pi\)
0.260650 + 0.965433i \(0.416063\pi\)
\(972\) −1.81724e13 −0.653002
\(973\) 4.56126e13 1.63146
\(974\) 7.86497e12 0.280015
\(975\) 1.44211e13 0.511068
\(976\) −2.09343e13 −0.738473
\(977\) 5.05890e13 1.77636 0.888180 0.459496i \(-0.151970\pi\)
0.888180 + 0.459496i \(0.151970\pi\)
\(978\) −2.51594e13 −0.879377
\(979\) −5.67886e13 −1.97578
\(980\) −7.03497e12 −0.243638
\(981\) −4.62528e12 −0.159451
\(982\) 5.74023e12 0.196983
\(983\) −2.36354e13 −0.807368 −0.403684 0.914898i \(-0.632271\pi\)
−0.403684 + 0.914898i \(0.632271\pi\)
\(984\) 2.96775e12 0.100914
\(985\) 8.41197e11 0.0284731
\(986\) −5.39807e12 −0.181883
\(987\) 1.88931e13 0.633688
\(988\) −9.27019e12 −0.309515
\(989\) −8.26451e13 −2.74684
\(990\) 1.08256e13 0.358175
\(991\) −3.30463e13 −1.08841 −0.544203 0.838953i \(-0.683168\pi\)
−0.544203 + 0.838953i \(0.683168\pi\)
\(992\) −3.40643e13 −1.11685
\(993\) −7.56423e11 −0.0246884
\(994\) 2.52654e13 0.820895
\(995\) 6.89505e12 0.223015
\(996\) −2.05473e13 −0.661587
\(997\) −1.63913e13 −0.525395 −0.262697 0.964878i \(-0.584612\pi\)
−0.262697 + 0.964878i \(0.584612\pi\)
\(998\) −5.17577e13 −1.65153
\(999\) −7.40876e11 −0.0235343
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.10.a.a.1.12 71
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.10.a.a.1.12 71 1.1 even 1 trivial