Properties

Label 2-197-1.1-c9-0-106
Degree $2$
Conductor $197$
Sign $1$
Analytic cond. $101.462$
Root an. cond. $10.0728$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 23.7·2-s + 158.·3-s + 53.5·4-s + 2.24e3·5-s + 3.77e3·6-s + 8.56e3·7-s − 1.09e4·8-s + 5.45e3·9-s + 5.33e4·10-s − 4.17e3·11-s + 8.48e3·12-s + 1.00e5·13-s + 2.03e5·14-s + 3.55e5·15-s − 2.86e5·16-s + 1.37e5·17-s + 1.29e5·18-s − 554.·19-s + 1.20e5·20-s + 1.35e6·21-s − 9.91e4·22-s − 2.98e5·23-s − 1.72e6·24-s + 3.08e6·25-s + 2.38e6·26-s − 2.25e6·27-s + 4.58e5·28-s + ⋯
L(s)  = 1  + 1.05·2-s + 1.13·3-s + 0.104·4-s + 1.60·5-s + 1.18·6-s + 1.34·7-s − 0.941·8-s + 0.277·9-s + 1.68·10-s − 0.0858·11-s + 0.118·12-s + 0.972·13-s + 1.41·14-s + 1.81·15-s − 1.09·16-s + 0.399·17-s + 0.291·18-s − 0.000976·19-s + 0.167·20-s + 1.52·21-s − 0.0902·22-s − 0.222·23-s − 1.06·24-s + 1.57·25-s + 1.02·26-s − 0.816·27-s + 0.140·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(197\)
Sign: $1$
Analytic conductor: \(101.462\)
Root analytic conductor: \(10.0728\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 197,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(8.595072729\)
\(L(\frac12)\) \(\approx\) \(8.595072729\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad197 \( 1 - 1.50e9T \)
good2 \( 1 - 23.7T + 512T^{2} \)
3 \( 1 - 158.T + 1.96e4T^{2} \)
5 \( 1 - 2.24e3T + 1.95e6T^{2} \)
7 \( 1 - 8.56e3T + 4.03e7T^{2} \)
11 \( 1 + 4.17e3T + 2.35e9T^{2} \)
13 \( 1 - 1.00e5T + 1.06e10T^{2} \)
17 \( 1 - 1.37e5T + 1.18e11T^{2} \)
19 \( 1 + 554.T + 3.22e11T^{2} \)
23 \( 1 + 2.98e5T + 1.80e12T^{2} \)
29 \( 1 - 7.04e6T + 1.45e13T^{2} \)
31 \( 1 + 1.69e6T + 2.64e13T^{2} \)
37 \( 1 + 7.33e5T + 1.29e14T^{2} \)
41 \( 1 - 2.29e7T + 3.27e14T^{2} \)
43 \( 1 + 2.16e7T + 5.02e14T^{2} \)
47 \( 1 + 2.29e7T + 1.11e15T^{2} \)
53 \( 1 + 6.52e7T + 3.29e15T^{2} \)
59 \( 1 - 1.63e8T + 8.66e15T^{2} \)
61 \( 1 + 2.09e8T + 1.16e16T^{2} \)
67 \( 1 - 5.38e6T + 2.72e16T^{2} \)
71 \( 1 - 2.16e7T + 4.58e16T^{2} \)
73 \( 1 + 2.05e8T + 5.88e16T^{2} \)
79 \( 1 + 1.95e8T + 1.19e17T^{2} \)
83 \( 1 - 7.62e8T + 1.86e17T^{2} \)
89 \( 1 - 5.30e8T + 3.50e17T^{2} \)
97 \( 1 - 7.83e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.86011147449732297507170876500, −9.674286777870539350474874675281, −8.797837516976353546792318437388, −8.081612989077519577368198368053, −6.35594321735404241578829856193, −5.48438462040836727896024250067, −4.55563381863726225202810900959, −3.24392026065528075686075103971, −2.28559692105422521530346985980, −1.32145789103419359426563614402, 1.32145789103419359426563614402, 2.28559692105422521530346985980, 3.24392026065528075686075103971, 4.55563381863726225202810900959, 5.48438462040836727896024250067, 6.35594321735404241578829856193, 8.081612989077519577368198368053, 8.797837516976353546792318437388, 9.674286777870539350474874675281, 10.86011147449732297507170876500

Graph of the $Z$-function along the critical line