Properties

Label 197.10.a.b.1.57
Level $197$
Weight $10$
Character 197.1
Self dual yes
Analytic conductor $101.462$
Analytic rank $0$
Dimension $76$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,10,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.462059724\)
Analytic rank: \(0\)
Dimension: \(76\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.57
Character \(\chi\) \(=\) 197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+23.7806 q^{2} +158.559 q^{3} +53.5170 q^{4} +2244.00 q^{5} +3770.63 q^{6} +8565.95 q^{7} -10903.0 q^{8} +5458.04 q^{9} +53363.8 q^{10} -4170.46 q^{11} +8485.61 q^{12} +100163. q^{13} +203703. q^{14} +355808. q^{15} -286681. q^{16} +137572. q^{17} +129796. q^{18} -554.482 q^{19} +120092. q^{20} +1.35821e6 q^{21} -99176.1 q^{22} -298742. q^{23} -1.72877e6 q^{24} +3.08243e6 q^{25} +2.38193e6 q^{26} -2.25550e6 q^{27} +458424. q^{28} +7.04446e6 q^{29} +8.46132e6 q^{30} -1.69791e6 q^{31} -1.23510e6 q^{32} -661266. q^{33} +3.27155e6 q^{34} +1.92220e7 q^{35} +292098. q^{36} -733666. q^{37} -13185.9 q^{38} +1.58817e7 q^{39} -2.44664e7 q^{40} +2.29376e7 q^{41} +3.22991e7 q^{42} -2.16998e7 q^{43} -223191. q^{44} +1.22479e7 q^{45} -7.10426e6 q^{46} -2.29201e7 q^{47} -4.54559e7 q^{48} +3.30219e7 q^{49} +7.33021e7 q^{50} +2.18133e7 q^{51} +5.36041e6 q^{52} -6.52649e7 q^{53} -5.36371e7 q^{54} -9.35854e6 q^{55} -9.33946e7 q^{56} -87918.3 q^{57} +1.67522e8 q^{58} +1.63111e8 q^{59} +1.90418e7 q^{60} -2.09496e8 q^{61} -4.03773e7 q^{62} +4.67533e7 q^{63} +1.17409e8 q^{64} +2.24766e8 q^{65} -1.57253e7 q^{66} +5.38355e6 q^{67} +7.36244e6 q^{68} -4.73683e7 q^{69} +4.57111e8 q^{70} +2.16257e7 q^{71} -5.95091e7 q^{72} -2.05407e8 q^{73} -1.74470e7 q^{74} +4.88748e8 q^{75} -29674.2 q^{76} -3.57240e7 q^{77} +3.77677e8 q^{78} -1.95725e8 q^{79} -6.43313e8 q^{80} -4.65061e8 q^{81} +5.45469e8 q^{82} +7.62342e8 q^{83} +7.26873e7 q^{84} +3.08712e8 q^{85} -5.16033e8 q^{86} +1.11696e9 q^{87} +4.54706e7 q^{88} +5.30222e8 q^{89} +2.91262e8 q^{90} +8.57989e8 q^{91} -1.59878e7 q^{92} -2.69219e8 q^{93} -5.45054e8 q^{94} -1.24426e6 q^{95} -1.95837e8 q^{96} +7.83842e8 q^{97} +7.85280e8 q^{98} -2.27626e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 76 q + 48 q^{2} + 890 q^{3} + 20736 q^{4} + 5171 q^{5} + 2688 q^{6} + 38986 q^{7} + 36507 q^{8} + 518318 q^{9} + 121093 q^{10} + 120464 q^{11} + 415744 q^{12} + 480131 q^{13} + 330849 q^{14} + 544874 q^{15}+ \cdots + 8731109606 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 23.7806 1.05096 0.525482 0.850805i \(-0.323885\pi\)
0.525482 + 0.850805i \(0.323885\pi\)
\(3\) 158.559 1.13018 0.565088 0.825031i \(-0.308842\pi\)
0.565088 + 0.825031i \(0.308842\pi\)
\(4\) 53.5170 0.104525
\(5\) 2244.00 1.60568 0.802839 0.596195i \(-0.203322\pi\)
0.802839 + 0.596195i \(0.203322\pi\)
\(6\) 3770.63 1.18777
\(7\) 8565.95 1.34845 0.674224 0.738527i \(-0.264478\pi\)
0.674224 + 0.738527i \(0.264478\pi\)
\(8\) −10903.0 −0.941112
\(9\) 5458.04 0.277297
\(10\) 53363.8 1.68751
\(11\) −4170.46 −0.0858850 −0.0429425 0.999078i \(-0.513673\pi\)
−0.0429425 + 0.999078i \(0.513673\pi\)
\(12\) 8485.61 0.118132
\(13\) 100163. 0.972660 0.486330 0.873775i \(-0.338335\pi\)
0.486330 + 0.873775i \(0.338335\pi\)
\(14\) 203703. 1.41717
\(15\) 355808. 1.81470
\(16\) −286681. −1.09360
\(17\) 137572. 0.399494 0.199747 0.979848i \(-0.435988\pi\)
0.199747 + 0.979848i \(0.435988\pi\)
\(18\) 129796. 0.291430
\(19\) −554.482 −0.000976104 0 −0.000488052 1.00000i \(-0.500155\pi\)
−0.000488052 1.00000i \(0.500155\pi\)
\(20\) 120092. 0.167834
\(21\) 1.35821e6 1.52398
\(22\) −99176.1 −0.0902620
\(23\) −298742. −0.222598 −0.111299 0.993787i \(-0.535501\pi\)
−0.111299 + 0.993787i \(0.535501\pi\)
\(24\) −1.72877e6 −1.06362
\(25\) 3.08243e6 1.57820
\(26\) 2.38193e6 1.02223
\(27\) −2.25550e6 −0.816781
\(28\) 458424. 0.140947
\(29\) 7.04446e6 1.84951 0.924755 0.380562i \(-0.124269\pi\)
0.924755 + 0.380562i \(0.124269\pi\)
\(30\) 8.46132e6 1.90718
\(31\) −1.69791e6 −0.330207 −0.165104 0.986276i \(-0.552796\pi\)
−0.165104 + 0.986276i \(0.552796\pi\)
\(32\) −1.23510e6 −0.208222
\(33\) −661266. −0.0970651
\(34\) 3.27155e6 0.419854
\(35\) 1.92220e7 2.16518
\(36\) 292098. 0.0289846
\(37\) −733666. −0.0643563 −0.0321781 0.999482i \(-0.510244\pi\)
−0.0321781 + 0.999482i \(0.510244\pi\)
\(38\) −13185.9 −0.00102585
\(39\) 1.58817e7 1.09928
\(40\) −2.44664e7 −1.51112
\(41\) 2.29376e7 1.26771 0.633855 0.773452i \(-0.281472\pi\)
0.633855 + 0.773452i \(0.281472\pi\)
\(42\) 3.22991e7 1.60165
\(43\) −2.16998e7 −0.967937 −0.483968 0.875085i \(-0.660805\pi\)
−0.483968 + 0.875085i \(0.660805\pi\)
\(44\) −223191. −0.00897716
\(45\) 1.22479e7 0.445251
\(46\) −7.10426e6 −0.233942
\(47\) −2.29201e7 −0.685135 −0.342568 0.939493i \(-0.611297\pi\)
−0.342568 + 0.939493i \(0.611297\pi\)
\(48\) −4.54559e7 −1.23596
\(49\) 3.30219e7 0.818313
\(50\) 7.33021e7 1.65864
\(51\) 2.18133e7 0.451498
\(52\) 5.36041e6 0.101668
\(53\) −6.52649e7 −1.13616 −0.568078 0.822975i \(-0.692313\pi\)
−0.568078 + 0.822975i \(0.692313\pi\)
\(54\) −5.36371e7 −0.858407
\(55\) −9.35854e6 −0.137904
\(56\) −9.33946e7 −1.26904
\(57\) −87918.3 −0.00110317
\(58\) 1.67522e8 1.94377
\(59\) 1.63111e8 1.75246 0.876232 0.481889i \(-0.160049\pi\)
0.876232 + 0.481889i \(0.160049\pi\)
\(60\) 1.90418e7 0.189682
\(61\) −2.09496e8 −1.93727 −0.968636 0.248485i \(-0.920067\pi\)
−0.968636 + 0.248485i \(0.920067\pi\)
\(62\) −4.03773e7 −0.347036
\(63\) 4.67533e7 0.373921
\(64\) 1.17409e8 0.874766
\(65\) 2.24766e8 1.56178
\(66\) −1.57253e7 −0.102012
\(67\) 5.38355e6 0.0326387 0.0163193 0.999867i \(-0.494805\pi\)
0.0163193 + 0.999867i \(0.494805\pi\)
\(68\) 7.36244e6 0.0417572
\(69\) −4.73683e7 −0.251574
\(70\) 4.57111e8 2.27552
\(71\) 2.16257e7 0.100997 0.0504983 0.998724i \(-0.483919\pi\)
0.0504983 + 0.998724i \(0.483919\pi\)
\(72\) −5.95091e7 −0.260968
\(73\) −2.05407e8 −0.846567 −0.423284 0.905997i \(-0.639123\pi\)
−0.423284 + 0.905997i \(0.639123\pi\)
\(74\) −1.74470e7 −0.0676361
\(75\) 4.88748e8 1.78365
\(76\) −29674.2 −0.000102028 0
\(77\) −3.57240e7 −0.115811
\(78\) 3.77677e8 1.15530
\(79\) −1.95725e8 −0.565358 −0.282679 0.959215i \(-0.591223\pi\)
−0.282679 + 0.959215i \(0.591223\pi\)
\(80\) −6.43313e8 −1.75597
\(81\) −4.65061e8 −1.20040
\(82\) 5.45469e8 1.33232
\(83\) 7.62342e8 1.76319 0.881594 0.472008i \(-0.156471\pi\)
0.881594 + 0.472008i \(0.156471\pi\)
\(84\) 7.26873e7 0.159295
\(85\) 3.08712e8 0.641459
\(86\) −5.16033e8 −1.01727
\(87\) 1.11696e9 2.09027
\(88\) 4.54706e7 0.0808274
\(89\) 5.30222e8 0.895782 0.447891 0.894088i \(-0.352175\pi\)
0.447891 + 0.894088i \(0.352175\pi\)
\(90\) 2.91262e8 0.467942
\(91\) 8.57989e8 1.31158
\(92\) −1.59878e7 −0.0232671
\(93\) −2.69219e8 −0.373192
\(94\) −5.45054e8 −0.720053
\(95\) −1.24426e6 −0.00156731
\(96\) −1.95837e8 −0.235328
\(97\) 7.83842e8 0.898992 0.449496 0.893282i \(-0.351604\pi\)
0.449496 + 0.893282i \(0.351604\pi\)
\(98\) 7.85280e8 0.860017
\(99\) −2.27626e7 −0.0238157
\(100\) 1.64962e8 0.164962
\(101\) −2.89399e7 −0.0276726 −0.0138363 0.999904i \(-0.504404\pi\)
−0.0138363 + 0.999904i \(0.504404\pi\)
\(102\) 5.18734e8 0.474508
\(103\) −1.14914e9 −1.00602 −0.503010 0.864281i \(-0.667774\pi\)
−0.503010 + 0.864281i \(0.667774\pi\)
\(104\) −1.09207e9 −0.915381
\(105\) 3.04783e9 2.44703
\(106\) −1.55204e9 −1.19406
\(107\) −1.07154e9 −0.790281 −0.395140 0.918621i \(-0.629304\pi\)
−0.395140 + 0.918621i \(0.629304\pi\)
\(108\) −1.20707e8 −0.0853743
\(109\) −2.09621e9 −1.42238 −0.711191 0.702999i \(-0.751844\pi\)
−0.711191 + 0.702999i \(0.751844\pi\)
\(110\) −2.22552e8 −0.144932
\(111\) −1.16330e8 −0.0727339
\(112\) −2.45569e9 −1.47466
\(113\) −1.30068e9 −0.750440 −0.375220 0.926936i \(-0.622433\pi\)
−0.375220 + 0.926936i \(0.622433\pi\)
\(114\) −2.09075e6 −0.00115939
\(115\) −6.70378e8 −0.357420
\(116\) 3.76998e8 0.193321
\(117\) 5.46692e8 0.269716
\(118\) 3.87888e9 1.84178
\(119\) 1.17843e9 0.538697
\(120\) −3.87937e9 −1.70783
\(121\) −2.34055e9 −0.992624
\(122\) −4.98193e9 −2.03600
\(123\) 3.63696e9 1.43273
\(124\) −9.08669e7 −0.0345150
\(125\) 2.53417e9 0.928412
\(126\) 1.11182e9 0.392978
\(127\) 4.96308e9 1.69291 0.846457 0.532458i \(-0.178731\pi\)
0.846457 + 0.532458i \(0.178731\pi\)
\(128\) 3.42443e9 1.12757
\(129\) −3.44070e9 −1.09394
\(130\) 5.34506e9 1.64137
\(131\) 4.96424e9 1.47276 0.736380 0.676568i \(-0.236534\pi\)
0.736380 + 0.676568i \(0.236534\pi\)
\(132\) −3.53889e7 −0.0101458
\(133\) −4.74967e6 −0.00131623
\(134\) 1.28024e8 0.0343021
\(135\) −5.06135e9 −1.31149
\(136\) −1.49995e9 −0.375968
\(137\) 8.16975e8 0.198137 0.0990687 0.995081i \(-0.468414\pi\)
0.0990687 + 0.995081i \(0.468414\pi\)
\(138\) −1.12645e9 −0.264396
\(139\) 8.12069e9 1.84513 0.922563 0.385846i \(-0.126090\pi\)
0.922563 + 0.385846i \(0.126090\pi\)
\(140\) 1.02871e9 0.226316
\(141\) −3.63420e9 −0.774323
\(142\) 5.14271e8 0.106144
\(143\) −4.17725e8 −0.0835369
\(144\) −1.56472e9 −0.303252
\(145\) 1.58078e10 2.96972
\(146\) −4.88469e9 −0.889712
\(147\) 5.23592e9 0.924837
\(148\) −3.92636e7 −0.00672686
\(149\) −7.89285e9 −1.31189 −0.655943 0.754811i \(-0.727729\pi\)
−0.655943 + 0.754811i \(0.727729\pi\)
\(150\) 1.16227e10 1.87455
\(151\) 6.23547e9 0.976053 0.488026 0.872829i \(-0.337717\pi\)
0.488026 + 0.872829i \(0.337717\pi\)
\(152\) 6.04552e6 0.000918623 0
\(153\) 7.50874e8 0.110779
\(154\) −8.49538e8 −0.121714
\(155\) −3.81011e9 −0.530207
\(156\) 8.49942e8 0.114902
\(157\) 6.29986e9 0.827527 0.413764 0.910384i \(-0.364214\pi\)
0.413764 + 0.910384i \(0.364214\pi\)
\(158\) −4.65445e9 −0.594171
\(159\) −1.03483e10 −1.28406
\(160\) −2.77157e9 −0.334338
\(161\) −2.55901e9 −0.300161
\(162\) −1.10594e10 −1.26158
\(163\) −1.43520e10 −1.59246 −0.796229 0.604996i \(-0.793175\pi\)
−0.796229 + 0.604996i \(0.793175\pi\)
\(164\) 1.22755e9 0.132508
\(165\) −1.48388e9 −0.155855
\(166\) 1.81290e10 1.85305
\(167\) −1.01542e10 −1.01023 −0.505115 0.863052i \(-0.668550\pi\)
−0.505115 + 0.863052i \(0.668550\pi\)
\(168\) −1.48086e10 −1.43424
\(169\) −5.71933e8 −0.0539330
\(170\) 7.34136e9 0.674150
\(171\) −3.02639e6 −0.000270671 0
\(172\) −1.16131e9 −0.101174
\(173\) 1.78773e9 0.151738 0.0758691 0.997118i \(-0.475827\pi\)
0.0758691 + 0.997118i \(0.475827\pi\)
\(174\) 2.65621e10 2.19680
\(175\) 2.64040e10 2.12813
\(176\) 1.19559e9 0.0939238
\(177\) 2.58628e10 1.98059
\(178\) 1.26090e10 0.941435
\(179\) −1.01569e10 −0.739476 −0.369738 0.929136i \(-0.620553\pi\)
−0.369738 + 0.929136i \(0.620553\pi\)
\(180\) 6.55469e8 0.0465400
\(181\) 2.32029e8 0.0160690 0.00803450 0.999968i \(-0.497443\pi\)
0.00803450 + 0.999968i \(0.497443\pi\)
\(182\) 2.04035e10 1.37842
\(183\) −3.32175e10 −2.18946
\(184\) 3.25718e9 0.209489
\(185\) −1.64635e9 −0.103336
\(186\) −6.40219e9 −0.392212
\(187\) −5.73739e8 −0.0343105
\(188\) −1.22662e9 −0.0716140
\(189\) −1.93205e10 −1.10139
\(190\) −2.95893e7 −0.00164719
\(191\) −7.95227e9 −0.432356 −0.216178 0.976354i \(-0.569359\pi\)
−0.216178 + 0.976354i \(0.569359\pi\)
\(192\) 1.86163e10 0.988639
\(193\) 5.32743e9 0.276382 0.138191 0.990406i \(-0.455871\pi\)
0.138191 + 0.990406i \(0.455871\pi\)
\(194\) 1.86402e10 0.944809
\(195\) 3.56387e10 1.76509
\(196\) 1.76723e9 0.0855344
\(197\) 1.50614e9 0.0712470
\(198\) −5.41308e8 −0.0250294
\(199\) −1.42328e10 −0.643355 −0.321677 0.946849i \(-0.604247\pi\)
−0.321677 + 0.946849i \(0.604247\pi\)
\(200\) −3.36078e10 −1.48527
\(201\) 8.53612e8 0.0368874
\(202\) −6.88207e8 −0.0290829
\(203\) 6.03425e10 2.49397
\(204\) 1.16738e9 0.0471930
\(205\) 5.14720e10 2.03553
\(206\) −2.73273e10 −1.05729
\(207\) −1.63055e9 −0.0617257
\(208\) −2.87147e10 −1.06370
\(209\) 2.31245e6 8.38327e−5 0
\(210\) 7.24793e10 2.57174
\(211\) −3.55505e9 −0.123474 −0.0617369 0.998092i \(-0.519664\pi\)
−0.0617369 + 0.998092i \(0.519664\pi\)
\(212\) −3.49278e9 −0.118757
\(213\) 3.42895e9 0.114144
\(214\) −2.54819e10 −0.830557
\(215\) −4.86944e10 −1.55420
\(216\) 2.45917e10 0.768682
\(217\) −1.45442e10 −0.445267
\(218\) −4.98492e10 −1.49487
\(219\) −3.25691e10 −0.956770
\(220\) −5.00841e8 −0.0144144
\(221\) 1.37796e10 0.388571
\(222\) −2.76639e9 −0.0764407
\(223\) 5.54414e9 0.150128 0.0750641 0.997179i \(-0.476084\pi\)
0.0750641 + 0.997179i \(0.476084\pi\)
\(224\) −1.05798e10 −0.280777
\(225\) 1.68240e10 0.437632
\(226\) −3.09309e10 −0.788686
\(227\) −2.25076e10 −0.562617 −0.281309 0.959617i \(-0.590768\pi\)
−0.281309 + 0.959617i \(0.590768\pi\)
\(228\) −4.70512e6 −0.000115309 0
\(229\) 2.75097e10 0.661038 0.330519 0.943799i \(-0.392776\pi\)
0.330519 + 0.943799i \(0.392776\pi\)
\(230\) −1.59420e10 −0.375636
\(231\) −5.66437e9 −0.130887
\(232\) −7.68058e10 −1.74060
\(233\) 3.97314e10 0.883146 0.441573 0.897225i \(-0.354421\pi\)
0.441573 + 0.897225i \(0.354421\pi\)
\(234\) 1.30007e10 0.283462
\(235\) −5.14328e10 −1.10011
\(236\) 8.72921e9 0.183177
\(237\) −3.10340e10 −0.638954
\(238\) 2.80239e10 0.566151
\(239\) 5.57823e10 1.10587 0.552937 0.833223i \(-0.313507\pi\)
0.552937 + 0.833223i \(0.313507\pi\)
\(240\) −1.02003e11 −1.98456
\(241\) −4.89201e10 −0.934137 −0.467068 0.884221i \(-0.654690\pi\)
−0.467068 + 0.884221i \(0.654690\pi\)
\(242\) −5.56598e10 −1.04321
\(243\) −2.93447e10 −0.539886
\(244\) −1.12116e10 −0.202494
\(245\) 7.41012e10 1.31395
\(246\) 8.64892e10 1.50575
\(247\) −5.55384e7 −0.000949418 0
\(248\) 1.85123e10 0.310762
\(249\) 1.20876e11 1.99271
\(250\) 6.02641e10 0.975727
\(251\) −1.94889e9 −0.0309925 −0.0154962 0.999880i \(-0.504933\pi\)
−0.0154962 + 0.999880i \(0.504933\pi\)
\(252\) 2.50210e9 0.0390842
\(253\) 1.24589e9 0.0191178
\(254\) 1.18025e11 1.77919
\(255\) 4.89492e10 0.724961
\(256\) 2.13216e10 0.310269
\(257\) −1.79219e10 −0.256262 −0.128131 0.991757i \(-0.540898\pi\)
−0.128131 + 0.991757i \(0.540898\pi\)
\(258\) −8.18219e10 −1.14969
\(259\) −6.28455e9 −0.0867811
\(260\) 1.20288e10 0.163246
\(261\) 3.84490e10 0.512865
\(262\) 1.18053e11 1.54782
\(263\) 2.63408e10 0.339490 0.169745 0.985488i \(-0.445706\pi\)
0.169745 + 0.985488i \(0.445706\pi\)
\(264\) 7.20978e9 0.0913491
\(265\) −1.46455e11 −1.82430
\(266\) −1.12950e8 −0.00138331
\(267\) 8.40716e10 1.01239
\(268\) 2.88112e8 0.00341157
\(269\) −9.24297e10 −1.07628 −0.538141 0.842855i \(-0.680873\pi\)
−0.538141 + 0.842855i \(0.680873\pi\)
\(270\) −1.20362e11 −1.37833
\(271\) −1.51011e11 −1.70077 −0.850387 0.526158i \(-0.823632\pi\)
−0.850387 + 0.526158i \(0.823632\pi\)
\(272\) −3.94392e10 −0.436886
\(273\) 1.36042e11 1.48232
\(274\) 1.94282e10 0.208235
\(275\) −1.28552e10 −0.135544
\(276\) −2.53501e9 −0.0262959
\(277\) −1.30060e11 −1.32735 −0.663675 0.748021i \(-0.731004\pi\)
−0.663675 + 0.748021i \(0.731004\pi\)
\(278\) 1.93115e11 1.93916
\(279\) −9.26726e9 −0.0915656
\(280\) −2.09578e11 −2.03767
\(281\) 1.11447e10 0.106633 0.0533163 0.998578i \(-0.483021\pi\)
0.0533163 + 0.998578i \(0.483021\pi\)
\(282\) −8.64234e10 −0.813786
\(283\) −5.98959e10 −0.555084 −0.277542 0.960714i \(-0.589520\pi\)
−0.277542 + 0.960714i \(0.589520\pi\)
\(284\) 1.15734e9 0.0105567
\(285\) −1.97289e8 −0.00177134
\(286\) −9.93375e9 −0.0877942
\(287\) 1.96482e11 1.70944
\(288\) −6.74123e9 −0.0577395
\(289\) −9.96618e10 −0.840405
\(290\) 3.75919e11 3.12107
\(291\) 1.24285e11 1.01602
\(292\) −1.09927e10 −0.0884878
\(293\) 5.85554e9 0.0464154 0.0232077 0.999731i \(-0.492612\pi\)
0.0232077 + 0.999731i \(0.492612\pi\)
\(294\) 1.24513e11 0.971971
\(295\) 3.66022e11 2.81389
\(296\) 7.99917e9 0.0605664
\(297\) 9.40648e9 0.0701492
\(298\) −1.87697e11 −1.37874
\(299\) −2.99228e10 −0.216512
\(300\) 2.61563e10 0.186437
\(301\) −1.85879e11 −1.30521
\(302\) 1.48283e11 1.02580
\(303\) −4.58868e9 −0.0312749
\(304\) 1.58959e8 0.00106747
\(305\) −4.70109e11 −3.11064
\(306\) 1.78562e10 0.116424
\(307\) −4.59056e10 −0.294946 −0.147473 0.989066i \(-0.547114\pi\)
−0.147473 + 0.989066i \(0.547114\pi\)
\(308\) −1.91184e9 −0.0121052
\(309\) −1.82207e11 −1.13698
\(310\) −9.06068e10 −0.557228
\(311\) −2.23914e11 −1.35725 −0.678626 0.734484i \(-0.737424\pi\)
−0.678626 + 0.734484i \(0.737424\pi\)
\(312\) −1.73158e11 −1.03454
\(313\) −3.12792e11 −1.84207 −0.921036 0.389477i \(-0.872656\pi\)
−0.921036 + 0.389477i \(0.872656\pi\)
\(314\) 1.49814e11 0.869701
\(315\) 1.04915e11 0.600397
\(316\) −1.04746e10 −0.0590943
\(317\) −2.66335e11 −1.48136 −0.740682 0.671856i \(-0.765497\pi\)
−0.740682 + 0.671856i \(0.765497\pi\)
\(318\) −2.46090e11 −1.34950
\(319\) −2.93787e10 −0.158845
\(320\) 2.63466e11 1.40459
\(321\) −1.69903e11 −0.893156
\(322\) −6.08547e10 −0.315459
\(323\) −7.62812e7 −0.000389948 0
\(324\) −2.48887e10 −0.125473
\(325\) 3.08745e11 1.53506
\(326\) −3.41299e11 −1.67362
\(327\) −3.32374e11 −1.60754
\(328\) −2.50088e11 −1.19306
\(329\) −1.96333e11 −0.923870
\(330\) −3.52876e10 −0.163798
\(331\) 4.11103e10 0.188246 0.0941228 0.995561i \(-0.469995\pi\)
0.0941228 + 0.995561i \(0.469995\pi\)
\(332\) 4.07983e10 0.184298
\(333\) −4.00438e9 −0.0178458
\(334\) −2.41472e11 −1.06171
\(335\) 1.20807e10 0.0524072
\(336\) −3.89373e11 −1.66663
\(337\) 1.24733e11 0.526802 0.263401 0.964686i \(-0.415156\pi\)
0.263401 + 0.964686i \(0.415156\pi\)
\(338\) −1.36009e10 −0.0566817
\(339\) −2.06234e11 −0.848130
\(340\) 1.65213e10 0.0670487
\(341\) 7.08106e9 0.0283598
\(342\) −7.19693e7 −0.000284466 0
\(343\) −6.28032e10 −0.244996
\(344\) 2.36593e11 0.910937
\(345\) −1.06295e11 −0.403948
\(346\) 4.25134e10 0.159471
\(347\) −2.80347e11 −1.03804 −0.519019 0.854763i \(-0.673703\pi\)
−0.519019 + 0.854763i \(0.673703\pi\)
\(348\) 5.97766e10 0.218486
\(349\) 4.37696e11 1.57927 0.789637 0.613574i \(-0.210269\pi\)
0.789637 + 0.613574i \(0.210269\pi\)
\(350\) 6.27902e11 2.23659
\(351\) −2.25917e11 −0.794450
\(352\) 5.15094e9 0.0178832
\(353\) 2.17796e11 0.746560 0.373280 0.927719i \(-0.378233\pi\)
0.373280 + 0.927719i \(0.378233\pi\)
\(354\) 6.15032e11 2.08153
\(355\) 4.85281e10 0.162168
\(356\) 2.83759e10 0.0936320
\(357\) 1.86852e11 0.608822
\(358\) −2.41538e11 −0.777163
\(359\) 2.17952e11 0.692526 0.346263 0.938137i \(-0.387450\pi\)
0.346263 + 0.938137i \(0.387450\pi\)
\(360\) −1.33539e11 −0.419030
\(361\) −3.22687e11 −0.999999
\(362\) 5.51779e9 0.0168879
\(363\) −3.71117e11 −1.12184
\(364\) 4.59170e10 0.137094
\(365\) −4.60933e11 −1.35932
\(366\) −7.89931e11 −2.30104
\(367\) 1.91047e11 0.549722 0.274861 0.961484i \(-0.411368\pi\)
0.274861 + 0.961484i \(0.411368\pi\)
\(368\) 8.56435e10 0.243433
\(369\) 1.25194e11 0.351533
\(370\) −3.91512e10 −0.108602
\(371\) −5.59055e11 −1.53205
\(372\) −1.44078e10 −0.0390081
\(373\) −2.81096e11 −0.751908 −0.375954 0.926638i \(-0.622685\pi\)
−0.375954 + 0.926638i \(0.622685\pi\)
\(374\) −1.36439e10 −0.0360591
\(375\) 4.01816e11 1.04927
\(376\) 2.49898e11 0.644789
\(377\) 7.05592e11 1.79894
\(378\) −4.59453e11 −1.15752
\(379\) −5.38419e11 −1.34043 −0.670215 0.742167i \(-0.733798\pi\)
−0.670215 + 0.742167i \(0.733798\pi\)
\(380\) −6.65891e7 −0.000163824 0
\(381\) 7.86943e11 1.91329
\(382\) −1.89110e11 −0.454390
\(383\) −1.72797e11 −0.410338 −0.205169 0.978727i \(-0.565774\pi\)
−0.205169 + 0.978727i \(0.565774\pi\)
\(384\) 5.42975e11 1.27435
\(385\) −8.01648e10 −0.185956
\(386\) 1.26690e11 0.290468
\(387\) −1.18438e11 −0.268406
\(388\) 4.19489e10 0.0939675
\(389\) −2.34366e11 −0.518945 −0.259472 0.965751i \(-0.583549\pi\)
−0.259472 + 0.965751i \(0.583549\pi\)
\(390\) 8.47509e11 1.85504
\(391\) −4.10985e10 −0.0889264
\(392\) −3.60038e11 −0.770124
\(393\) 7.87126e11 1.66448
\(394\) 3.58169e10 0.0748781
\(395\) −4.39207e11 −0.907784
\(396\) −1.21818e9 −0.00248934
\(397\) 4.12727e11 0.833883 0.416941 0.908933i \(-0.363102\pi\)
0.416941 + 0.908933i \(0.363102\pi\)
\(398\) −3.38464e11 −0.676143
\(399\) −7.53103e8 −0.00148757
\(400\) −8.83673e11 −1.72592
\(401\) 1.09972e11 0.212389 0.106194 0.994345i \(-0.466133\pi\)
0.106194 + 0.994345i \(0.466133\pi\)
\(402\) 2.02994e10 0.0387674
\(403\) −1.70067e11 −0.321179
\(404\) −1.54877e9 −0.00289249
\(405\) −1.04360e12 −1.92746
\(406\) 1.43498e12 2.62107
\(407\) 3.05973e9 0.00552724
\(408\) −2.37831e11 −0.424910
\(409\) −7.11319e11 −1.25693 −0.628463 0.777840i \(-0.716316\pi\)
−0.628463 + 0.777840i \(0.716316\pi\)
\(410\) 1.22403e12 2.13927
\(411\) 1.29539e11 0.223930
\(412\) −6.14987e10 −0.105155
\(413\) 1.39720e12 2.36311
\(414\) −3.87753e10 −0.0648715
\(415\) 1.71070e12 2.83111
\(416\) −1.23711e11 −0.202530
\(417\) 1.28761e12 2.08532
\(418\) 5.49914e7 8.81052e−5 0
\(419\) −2.09162e9 −0.00331527 −0.00165764 0.999999i \(-0.500528\pi\)
−0.00165764 + 0.999999i \(0.500528\pi\)
\(420\) 1.63111e11 0.255777
\(421\) −1.05011e12 −1.62917 −0.814584 0.580046i \(-0.803034\pi\)
−0.814584 + 0.580046i \(0.803034\pi\)
\(422\) −8.45412e10 −0.129766
\(423\) −1.25099e11 −0.189986
\(424\) 7.11583e11 1.06925
\(425\) 4.24056e11 0.630483
\(426\) 8.15425e10 0.119961
\(427\) −1.79453e12 −2.61231
\(428\) −5.73456e10 −0.0826044
\(429\) −6.62342e10 −0.0944114
\(430\) −1.15798e12 −1.63340
\(431\) −5.40212e11 −0.754079 −0.377039 0.926197i \(-0.623058\pi\)
−0.377039 + 0.926197i \(0.623058\pi\)
\(432\) 6.46608e11 0.893232
\(433\) 4.53104e11 0.619445 0.309722 0.950827i \(-0.399764\pi\)
0.309722 + 0.950827i \(0.399764\pi\)
\(434\) −3.45870e11 −0.467960
\(435\) 2.50647e12 3.35631
\(436\) −1.12183e11 −0.148675
\(437\) 1.65647e8 0.000217279 0
\(438\) −7.74513e11 −1.00553
\(439\) 7.34930e11 0.944399 0.472200 0.881492i \(-0.343460\pi\)
0.472200 + 0.881492i \(0.343460\pi\)
\(440\) 1.02036e11 0.129783
\(441\) 1.80235e11 0.226916
\(442\) 3.27687e11 0.408375
\(443\) 7.37000e11 0.909181 0.454591 0.890700i \(-0.349786\pi\)
0.454591 + 0.890700i \(0.349786\pi\)
\(444\) −6.22561e9 −0.00760254
\(445\) 1.18982e12 1.43834
\(446\) 1.31843e11 0.157779
\(447\) −1.25149e12 −1.48266
\(448\) 1.00572e12 1.17958
\(449\) −3.83736e11 −0.445578 −0.222789 0.974867i \(-0.571516\pi\)
−0.222789 + 0.974867i \(0.571516\pi\)
\(450\) 4.00086e11 0.459936
\(451\) −9.56603e10 −0.108877
\(452\) −6.96083e10 −0.0784401
\(453\) 9.88692e11 1.10311
\(454\) −5.35244e11 −0.591290
\(455\) 1.92533e12 2.10598
\(456\) 9.58573e8 0.00103821
\(457\) 5.41880e11 0.581140 0.290570 0.956854i \(-0.406155\pi\)
0.290570 + 0.956854i \(0.406155\pi\)
\(458\) 6.54198e11 0.694727
\(459\) −3.10294e11 −0.326299
\(460\) −3.58766e10 −0.0373595
\(461\) −1.84902e11 −0.190672 −0.0953359 0.995445i \(-0.530393\pi\)
−0.0953359 + 0.995445i \(0.530393\pi\)
\(462\) −1.34702e11 −0.137558
\(463\) 8.43885e11 0.853432 0.426716 0.904386i \(-0.359670\pi\)
0.426716 + 0.904386i \(0.359670\pi\)
\(464\) −2.01951e12 −2.02262
\(465\) −6.04129e11 −0.599227
\(466\) 9.44838e11 0.928155
\(467\) 2.67178e11 0.259941 0.129971 0.991518i \(-0.458512\pi\)
0.129971 + 0.991518i \(0.458512\pi\)
\(468\) 2.92573e10 0.0281922
\(469\) 4.61152e10 0.0440116
\(470\) −1.22310e12 −1.15617
\(471\) 9.98901e11 0.935251
\(472\) −1.77840e12 −1.64926
\(473\) 9.04981e10 0.0831312
\(474\) −7.38006e11 −0.671518
\(475\) −1.70915e9 −0.00154049
\(476\) 6.30663e10 0.0563075
\(477\) −3.56218e11 −0.315053
\(478\) 1.32654e12 1.16223
\(479\) 2.90355e11 0.252011 0.126006 0.992030i \(-0.459784\pi\)
0.126006 + 0.992030i \(0.459784\pi\)
\(480\) −4.39458e11 −0.377861
\(481\) −7.34860e10 −0.0625968
\(482\) −1.16335e12 −0.981744
\(483\) −4.05754e11 −0.339235
\(484\) −1.25259e11 −0.103754
\(485\) 1.75895e12 1.44349
\(486\) −6.97836e11 −0.567401
\(487\) −8.26528e11 −0.665851 −0.332926 0.942953i \(-0.608036\pi\)
−0.332926 + 0.942953i \(0.608036\pi\)
\(488\) 2.28413e12 1.82319
\(489\) −2.27564e12 −1.79976
\(490\) 1.76217e12 1.38091
\(491\) 2.30239e12 1.78777 0.893887 0.448292i \(-0.147967\pi\)
0.893887 + 0.448292i \(0.147967\pi\)
\(492\) 1.94639e11 0.149757
\(493\) 9.69121e11 0.738868
\(494\) −1.32074e9 −0.000997804 0
\(495\) −5.10793e10 −0.0382403
\(496\) 4.86757e11 0.361115
\(497\) 1.85244e11 0.136189
\(498\) 2.87451e12 2.09427
\(499\) 1.71934e12 1.24139 0.620696 0.784051i \(-0.286850\pi\)
0.620696 + 0.784051i \(0.286850\pi\)
\(500\) 1.35621e11 0.0970426
\(501\) −1.61004e12 −1.14174
\(502\) −4.63458e10 −0.0325720
\(503\) 1.78429e12 1.24282 0.621411 0.783485i \(-0.286560\pi\)
0.621411 + 0.783485i \(0.286560\pi\)
\(504\) −5.09752e11 −0.351902
\(505\) −6.49412e10 −0.0444333
\(506\) 2.96280e10 0.0200921
\(507\) −9.06852e10 −0.0609538
\(508\) 2.65609e11 0.176952
\(509\) −2.01708e12 −1.33196 −0.665982 0.745968i \(-0.731987\pi\)
−0.665982 + 0.745968i \(0.731987\pi\)
\(510\) 1.16404e12 0.761908
\(511\) −1.75950e12 −1.14155
\(512\) −1.24627e12 −0.801487
\(513\) 1.25063e9 0.000797264 0
\(514\) −4.26193e11 −0.269322
\(515\) −2.57868e12 −1.61535
\(516\) −1.84136e11 −0.114344
\(517\) 9.55875e10 0.0588428
\(518\) −1.49450e11 −0.0912038
\(519\) 2.83462e11 0.171491
\(520\) −2.45062e12 −1.46981
\(521\) 4.31991e11 0.256865 0.128432 0.991718i \(-0.459005\pi\)
0.128432 + 0.991718i \(0.459005\pi\)
\(522\) 9.14340e11 0.539002
\(523\) 1.53890e12 0.899398 0.449699 0.893180i \(-0.351531\pi\)
0.449699 + 0.893180i \(0.351531\pi\)
\(524\) 2.65671e11 0.153941
\(525\) 4.18659e12 2.40516
\(526\) 6.26399e11 0.356792
\(527\) −2.33585e11 −0.131916
\(528\) 1.89572e11 0.106150
\(529\) −1.71191e12 −0.950450
\(530\) −3.48278e12 −1.91728
\(531\) 8.90267e11 0.485954
\(532\) −2.54188e8 −0.000137579 0
\(533\) 2.29749e12 1.23305
\(534\) 1.99927e12 1.06399
\(535\) −2.40454e12 −1.26894
\(536\) −5.86969e10 −0.0307166
\(537\) −1.61048e12 −0.835738
\(538\) −2.19803e12 −1.13113
\(539\) −1.37717e11 −0.0702808
\(540\) −2.70868e11 −0.137084
\(541\) 1.72086e12 0.863691 0.431846 0.901948i \(-0.357863\pi\)
0.431846 + 0.901948i \(0.357863\pi\)
\(542\) −3.59113e12 −1.78745
\(543\) 3.67904e10 0.0181608
\(544\) −1.69915e11 −0.0831836
\(545\) −4.70391e12 −2.28389
\(546\) 3.23516e12 1.55786
\(547\) 2.82751e12 1.35040 0.675199 0.737636i \(-0.264058\pi\)
0.675199 + 0.737636i \(0.264058\pi\)
\(548\) 4.37221e10 0.0207104
\(549\) −1.14344e12 −0.537200
\(550\) −3.05704e11 −0.142452
\(551\) −3.90603e9 −0.00180532
\(552\) 5.16456e11 0.236760
\(553\) −1.67657e12 −0.762356
\(554\) −3.09291e12 −1.39500
\(555\) −2.61044e11 −0.116787
\(556\) 4.34595e11 0.192863
\(557\) 6.12723e11 0.269722 0.134861 0.990865i \(-0.456941\pi\)
0.134861 + 0.990865i \(0.456941\pi\)
\(558\) −2.20381e11 −0.0962321
\(559\) −2.17351e12 −0.941473
\(560\) −5.51058e12 −2.36784
\(561\) −9.09717e10 −0.0387769
\(562\) 2.65027e11 0.112067
\(563\) −1.16674e12 −0.489427 −0.244714 0.969595i \(-0.578694\pi\)
−0.244714 + 0.969595i \(0.578694\pi\)
\(564\) −1.94491e11 −0.0809364
\(565\) −2.91872e12 −1.20497
\(566\) −1.42436e12 −0.583373
\(567\) −3.98369e12 −1.61868
\(568\) −2.35785e11 −0.0950491
\(569\) 3.24089e12 1.29616 0.648080 0.761573i \(-0.275572\pi\)
0.648080 + 0.761573i \(0.275572\pi\)
\(570\) −4.69165e9 −0.00186161
\(571\) −1.24221e12 −0.489025 −0.244512 0.969646i \(-0.578628\pi\)
−0.244512 + 0.969646i \(0.578628\pi\)
\(572\) −2.23554e10 −0.00873172
\(573\) −1.26091e12 −0.488638
\(574\) 4.67246e12 1.79656
\(575\) −9.20851e11 −0.351305
\(576\) 6.40824e11 0.242570
\(577\) −4.32191e12 −1.62325 −0.811624 0.584181i \(-0.801416\pi\)
−0.811624 + 0.584181i \(0.801416\pi\)
\(578\) −2.37002e12 −0.883235
\(579\) 8.44714e11 0.312361
\(580\) 8.45986e11 0.310411
\(581\) 6.53019e12 2.37757
\(582\) 2.95558e12 1.06780
\(583\) 2.72185e11 0.0975788
\(584\) 2.23955e12 0.796714
\(585\) 1.22678e12 0.433077
\(586\) 1.39248e11 0.0487810
\(587\) −1.30220e12 −0.452696 −0.226348 0.974047i \(-0.572679\pi\)
−0.226348 + 0.974047i \(0.572679\pi\)
\(588\) 2.80211e11 0.0966690
\(589\) 9.41460e8 0.000322317 0
\(590\) 8.70422e12 2.95730
\(591\) 2.38812e11 0.0805217
\(592\) 2.10328e11 0.0703800
\(593\) 1.44029e12 0.478304 0.239152 0.970982i \(-0.423131\pi\)
0.239152 + 0.970982i \(0.423131\pi\)
\(594\) 2.23692e11 0.0737243
\(595\) 2.64441e12 0.864974
\(596\) −4.22402e11 −0.137125
\(597\) −2.25674e12 −0.727104
\(598\) −7.11582e11 −0.227546
\(599\) −3.03567e12 −0.963460 −0.481730 0.876320i \(-0.659991\pi\)
−0.481730 + 0.876320i \(0.659991\pi\)
\(600\) −5.32882e12 −1.67861
\(601\) −4.54193e12 −1.42005 −0.710027 0.704174i \(-0.751317\pi\)
−0.710027 + 0.704174i \(0.751317\pi\)
\(602\) −4.42032e12 −1.37173
\(603\) 2.93837e10 0.00905062
\(604\) 3.33704e11 0.102022
\(605\) −5.25222e12 −1.59384
\(606\) −1.09122e11 −0.0328688
\(607\) −2.62894e11 −0.0786017 −0.0393008 0.999227i \(-0.512513\pi\)
−0.0393008 + 0.999227i \(0.512513\pi\)
\(608\) 6.84841e8 0.000203247 0
\(609\) 9.56786e12 2.81862
\(610\) −1.11795e13 −3.26917
\(611\) −2.29574e12 −0.666404
\(612\) 4.01845e10 0.0115792
\(613\) 6.55616e12 1.87533 0.937664 0.347542i \(-0.112984\pi\)
0.937664 + 0.347542i \(0.112984\pi\)
\(614\) −1.09166e12 −0.309978
\(615\) 8.16136e12 2.30051
\(616\) 3.89499e11 0.108992
\(617\) 2.72693e11 0.0757515 0.0378757 0.999282i \(-0.487941\pi\)
0.0378757 + 0.999282i \(0.487941\pi\)
\(618\) −4.33300e12 −1.19492
\(619\) −2.38402e11 −0.0652682 −0.0326341 0.999467i \(-0.510390\pi\)
−0.0326341 + 0.999467i \(0.510390\pi\)
\(620\) −2.03906e11 −0.0554201
\(621\) 6.73811e11 0.181814
\(622\) −5.32482e12 −1.42642
\(623\) 4.54185e12 1.20792
\(624\) −4.55298e12 −1.20217
\(625\) −3.33687e11 −0.0874741
\(626\) −7.43839e12 −1.93595
\(627\) 3.66660e8 9.47457e−5 0
\(628\) 3.37149e11 0.0864976
\(629\) −1.00932e11 −0.0257099
\(630\) 2.49493e12 0.630996
\(631\) −4.61151e11 −0.115801 −0.0579003 0.998322i \(-0.518441\pi\)
−0.0579003 + 0.998322i \(0.518441\pi\)
\(632\) 2.13399e12 0.532065
\(633\) −5.63686e11 −0.139547
\(634\) −6.33361e12 −1.55686
\(635\) 1.11372e13 2.71828
\(636\) −5.53812e11 −0.134216
\(637\) 3.30756e12 0.795940
\(638\) −6.98643e11 −0.166941
\(639\) 1.18034e11 0.0280061
\(640\) 7.68443e12 1.81051
\(641\) 7.93360e12 1.85613 0.928067 0.372413i \(-0.121470\pi\)
0.928067 + 0.372413i \(0.121470\pi\)
\(642\) −4.04039e12 −0.938675
\(643\) 4.97067e12 1.14674 0.573371 0.819296i \(-0.305635\pi\)
0.573371 + 0.819296i \(0.305635\pi\)
\(644\) −1.36950e11 −0.0313745
\(645\) −7.72094e12 −1.75651
\(646\) −1.81401e9 −0.000409821 0
\(647\) −1.99656e11 −0.0447933 −0.0223966 0.999749i \(-0.507130\pi\)
−0.0223966 + 0.999749i \(0.507130\pi\)
\(648\) 5.07056e12 1.12971
\(649\) −6.80248e11 −0.150510
\(650\) 7.34213e12 1.61329
\(651\) −2.30612e12 −0.503230
\(652\) −7.68075e11 −0.166452
\(653\) −7.28925e12 −1.56882 −0.784410 0.620242i \(-0.787034\pi\)
−0.784410 + 0.620242i \(0.787034\pi\)
\(654\) −7.90405e12 −1.68947
\(655\) 1.11398e13 2.36478
\(656\) −6.57575e12 −1.38637
\(657\) −1.12112e12 −0.234751
\(658\) −4.66890e12 −0.970954
\(659\) 8.57265e11 0.177064 0.0885321 0.996073i \(-0.471782\pi\)
0.0885321 + 0.996073i \(0.471782\pi\)
\(660\) −7.94130e10 −0.0162908
\(661\) 9.07957e12 1.84994 0.924972 0.380034i \(-0.124088\pi\)
0.924972 + 0.380034i \(0.124088\pi\)
\(662\) 9.77628e11 0.197839
\(663\) 2.18488e12 0.439154
\(664\) −8.31182e12 −1.65936
\(665\) −1.06583e10 −0.00211344
\(666\) −9.52267e10 −0.0187553
\(667\) −2.10447e12 −0.411697
\(668\) −5.43420e11 −0.105595
\(669\) 8.79075e11 0.169671
\(670\) 2.87287e11 0.0550781
\(671\) 8.73693e11 0.166383
\(672\) −1.67753e12 −0.317328
\(673\) 4.62204e12 0.868492 0.434246 0.900794i \(-0.357015\pi\)
0.434246 + 0.900794i \(0.357015\pi\)
\(674\) 2.96623e12 0.553650
\(675\) −6.95242e12 −1.28905
\(676\) −3.06081e10 −0.00563737
\(677\) 1.25321e12 0.229285 0.114642 0.993407i \(-0.463428\pi\)
0.114642 + 0.993407i \(0.463428\pi\)
\(678\) −4.90438e12 −0.891354
\(679\) 6.71435e12 1.21224
\(680\) −3.36589e12 −0.603684
\(681\) −3.56879e12 −0.635856
\(682\) 1.68392e11 0.0298052
\(683\) −7.78380e12 −1.36867 −0.684335 0.729168i \(-0.739907\pi\)
−0.684335 + 0.729168i \(0.739907\pi\)
\(684\) −1.61963e8 −2.82920e−5 0
\(685\) 1.83330e12 0.318145
\(686\) −1.49350e12 −0.257482
\(687\) 4.36192e12 0.747089
\(688\) 6.22090e12 1.05854
\(689\) −6.53710e12 −1.10509
\(690\) −2.52775e12 −0.424535
\(691\) 9.19423e12 1.53414 0.767069 0.641565i \(-0.221715\pi\)
0.767069 + 0.641565i \(0.221715\pi\)
\(692\) 9.56741e10 0.0158605
\(693\) −1.94983e11 −0.0321142
\(694\) −6.66682e12 −1.09094
\(695\) 1.82229e13 2.96268
\(696\) −1.21783e13 −1.96718
\(697\) 3.15557e12 0.506442
\(698\) 1.04087e13 1.65976
\(699\) 6.29979e12 0.998111
\(700\) 1.41306e12 0.222443
\(701\) 4.61654e12 0.722081 0.361040 0.932550i \(-0.382422\pi\)
0.361040 + 0.932550i \(0.382422\pi\)
\(702\) −5.37244e12 −0.834938
\(703\) 4.06805e8 6.28184e−5 0
\(704\) −4.89650e11 −0.0751292
\(705\) −8.15515e12 −1.24331
\(706\) 5.17933e12 0.784607
\(707\) −2.47897e11 −0.0373151
\(708\) 1.38410e12 0.207022
\(709\) 9.21112e12 1.36900 0.684501 0.729012i \(-0.260020\pi\)
0.684501 + 0.729012i \(0.260020\pi\)
\(710\) 1.15403e12 0.170433
\(711\) −1.06827e12 −0.156772
\(712\) −5.78101e12 −0.843031
\(713\) 5.07236e11 0.0735034
\(714\) 4.44345e12 0.639850
\(715\) −9.37377e11 −0.134133
\(716\) −5.43569e11 −0.0772940
\(717\) 8.84480e12 1.24983
\(718\) 5.18303e12 0.727820
\(719\) −7.33461e12 −1.02352 −0.511761 0.859128i \(-0.671007\pi\)
−0.511761 + 0.859128i \(0.671007\pi\)
\(720\) −3.51123e12 −0.486926
\(721\) −9.84350e12 −1.35657
\(722\) −7.67370e12 −1.05096
\(723\) −7.75673e12 −1.05574
\(724\) 1.24175e10 0.00167962
\(725\) 2.17141e13 2.91891
\(726\) −8.82538e12 −1.17901
\(727\) 1.75751e11 0.0233342 0.0116671 0.999932i \(-0.496286\pi\)
0.0116671 + 0.999932i \(0.496286\pi\)
\(728\) −9.35465e12 −1.23434
\(729\) 4.50091e12 0.590237
\(730\) −1.09613e13 −1.42859
\(731\) −2.98528e12 −0.386685
\(732\) −1.77770e12 −0.228854
\(733\) 4.96599e12 0.635386 0.317693 0.948194i \(-0.397092\pi\)
0.317693 + 0.948194i \(0.397092\pi\)
\(734\) 4.54321e12 0.577738
\(735\) 1.17494e13 1.48499
\(736\) 3.68976e11 0.0463498
\(737\) −2.24519e10 −0.00280317
\(738\) 2.97719e12 0.369448
\(739\) −4.37258e12 −0.539309 −0.269654 0.962957i \(-0.586909\pi\)
−0.269654 + 0.962957i \(0.586909\pi\)
\(740\) −8.81077e10 −0.0108012
\(741\) −8.80613e9 −0.00107301
\(742\) −1.32947e13 −1.61013
\(743\) 6.72449e12 0.809486 0.404743 0.914430i \(-0.367361\pi\)
0.404743 + 0.914430i \(0.367361\pi\)
\(744\) 2.93530e12 0.351216
\(745\) −1.77116e13 −2.10647
\(746\) −6.68463e12 −0.790228
\(747\) 4.16090e12 0.488927
\(748\) −3.07048e10 −0.00358632
\(749\) −9.17876e12 −1.06565
\(750\) 9.55543e12 1.10274
\(751\) −5.15186e11 −0.0590996 −0.0295498 0.999563i \(-0.509407\pi\)
−0.0295498 + 0.999563i \(0.509407\pi\)
\(752\) 6.57075e12 0.749264
\(753\) −3.09015e11 −0.0350269
\(754\) 1.67794e13 1.89063
\(755\) 1.39924e13 1.56723
\(756\) −1.03397e12 −0.115123
\(757\) −1.58558e13 −1.75491 −0.877457 0.479655i \(-0.840762\pi\)
−0.877457 + 0.479655i \(0.840762\pi\)
\(758\) −1.28039e13 −1.40874
\(759\) 1.97548e11 0.0216065
\(760\) 1.35662e10 0.00147501
\(761\) −1.53136e13 −1.65518 −0.827591 0.561332i \(-0.810289\pi\)
−0.827591 + 0.561332i \(0.810289\pi\)
\(762\) 1.87140e13 2.01080
\(763\) −1.79561e13 −1.91801
\(764\) −4.25582e11 −0.0451921
\(765\) 1.68497e12 0.177875
\(766\) −4.10921e12 −0.431250
\(767\) 1.63376e13 1.70455
\(768\) 3.38073e12 0.350659
\(769\) −2.52343e12 −0.260210 −0.130105 0.991500i \(-0.541531\pi\)
−0.130105 + 0.991500i \(0.541531\pi\)
\(770\) −1.90637e12 −0.195433
\(771\) −2.84168e12 −0.289621
\(772\) 2.85108e11 0.0288890
\(773\) 1.19609e13 1.20492 0.602459 0.798150i \(-0.294188\pi\)
0.602459 + 0.798150i \(0.294188\pi\)
\(774\) −2.81653e12 −0.282085
\(775\) −5.23369e12 −0.521135
\(776\) −8.54624e12 −0.846052
\(777\) −9.96474e11 −0.0980779
\(778\) −5.57336e12 −0.545392
\(779\) −1.27185e10 −0.00123742
\(780\) 1.90727e12 0.184496
\(781\) −9.01890e10 −0.00867409
\(782\) −9.77347e11 −0.0934584
\(783\) −1.58888e13 −1.51065
\(784\) −9.46673e12 −0.894907
\(785\) 1.41369e13 1.32874
\(786\) 1.87183e13 1.74931
\(787\) −2.09638e11 −0.0194798 −0.00973989 0.999953i \(-0.503100\pi\)
−0.00973989 + 0.999953i \(0.503100\pi\)
\(788\) 8.06040e10 0.00744712
\(789\) 4.17657e12 0.383684
\(790\) −1.04446e13 −0.954048
\(791\) −1.11415e13 −1.01193
\(792\) 2.48180e11 0.0224132
\(793\) −2.09836e13 −1.88431
\(794\) 9.81489e12 0.876381
\(795\) −2.32217e13 −2.06178
\(796\) −7.61695e11 −0.0672469
\(797\) 7.68479e12 0.674636 0.337318 0.941391i \(-0.390480\pi\)
0.337318 + 0.941391i \(0.390480\pi\)
\(798\) −1.79093e10 −0.00156338
\(799\) −3.15317e12 −0.273707
\(800\) −3.80711e12 −0.328618
\(801\) 2.89397e12 0.248398
\(802\) 2.61519e12 0.223213
\(803\) 8.56641e11 0.0727074
\(804\) 4.56828e10 0.00385567
\(805\) −5.74242e12 −0.481963
\(806\) −4.04430e12 −0.337548
\(807\) −1.46556e13 −1.21639
\(808\) 3.15531e11 0.0260430
\(809\) 1.00029e13 0.821026 0.410513 0.911855i \(-0.365350\pi\)
0.410513 + 0.911855i \(0.365350\pi\)
\(810\) −2.48174e13 −2.02569
\(811\) 8.31787e12 0.675178 0.337589 0.941294i \(-0.390389\pi\)
0.337589 + 0.941294i \(0.390389\pi\)
\(812\) 3.22935e12 0.260683
\(813\) −2.39442e13 −1.92217
\(814\) 7.27622e10 0.00580893
\(815\) −3.22059e13 −2.55698
\(816\) −6.25346e12 −0.493758
\(817\) 1.20321e10 0.000944807 0
\(818\) −1.69156e13 −1.32098
\(819\) 4.68294e12 0.363698
\(820\) 2.75463e12 0.212765
\(821\) 1.78699e13 1.37271 0.686353 0.727269i \(-0.259211\pi\)
0.686353 + 0.727269i \(0.259211\pi\)
\(822\) 3.08052e12 0.235342
\(823\) 1.36245e13 1.03519 0.517596 0.855625i \(-0.326827\pi\)
0.517596 + 0.855625i \(0.326827\pi\)
\(824\) 1.25291e13 0.946777
\(825\) −2.03831e12 −0.153189
\(826\) 3.32263e13 2.48354
\(827\) 1.90995e13 1.41987 0.709933 0.704269i \(-0.248725\pi\)
0.709933 + 0.704269i \(0.248725\pi\)
\(828\) −8.72619e10 −0.00645191
\(829\) −2.52205e13 −1.85464 −0.927319 0.374273i \(-0.877892\pi\)
−0.927319 + 0.374273i \(0.877892\pi\)
\(830\) 4.06815e13 2.97540
\(831\) −2.06223e13 −1.50014
\(832\) 1.17600e13 0.850849
\(833\) 4.54289e12 0.326911
\(834\) 3.06201e13 2.19159
\(835\) −2.27860e13 −1.62210
\(836\) 1.23755e8 8.76265e−6 0
\(837\) 3.82963e12 0.269707
\(838\) −4.97400e10 −0.00348423
\(839\) 1.69055e13 1.17787 0.588937 0.808179i \(-0.299546\pi\)
0.588937 + 0.808179i \(0.299546\pi\)
\(840\) −3.32305e13 −2.30293
\(841\) 3.51173e13 2.42069
\(842\) −2.49723e13 −1.71220
\(843\) 1.76709e12 0.120513
\(844\) −1.90255e11 −0.0129061
\(845\) −1.28342e12 −0.0865991
\(846\) −2.97493e12 −0.199669
\(847\) −2.00491e13 −1.33850
\(848\) 1.87102e13 1.24250
\(849\) −9.49706e12 −0.627342
\(850\) 1.00843e13 0.662615
\(851\) 2.19177e11 0.0143256
\(852\) 1.83507e11 0.0119309
\(853\) −6.13701e12 −0.396905 −0.198452 0.980111i \(-0.563592\pi\)
−0.198452 + 0.980111i \(0.563592\pi\)
\(854\) −4.26749e13 −2.74544
\(855\) −6.79123e9 −0.000434611 0
\(856\) 1.16830e13 0.743742
\(857\) 2.13966e13 1.35498 0.677488 0.735534i \(-0.263069\pi\)
0.677488 + 0.735534i \(0.263069\pi\)
\(858\) −1.57509e12 −0.0992229
\(859\) 1.84548e13 1.15649 0.578243 0.815865i \(-0.303739\pi\)
0.578243 + 0.815865i \(0.303739\pi\)
\(860\) −2.60598e12 −0.162453
\(861\) 3.11540e13 1.93197
\(862\) −1.28466e13 −0.792510
\(863\) 9.62324e12 0.590572 0.295286 0.955409i \(-0.404585\pi\)
0.295286 + 0.955409i \(0.404585\pi\)
\(864\) 2.78577e12 0.170072
\(865\) 4.01168e12 0.243643
\(866\) 1.07751e13 0.651014
\(867\) −1.58023e13 −0.949805
\(868\) −7.78361e11 −0.0465417
\(869\) 8.16263e11 0.0485558
\(870\) 5.96055e13 3.52736
\(871\) 5.39231e11 0.0317463
\(872\) 2.28550e13 1.33862
\(873\) 4.27825e12 0.249288
\(874\) 3.93918e9 0.000228352 0
\(875\) 2.17076e13 1.25191
\(876\) −1.74300e12 −0.100007
\(877\) 1.42853e11 0.00815439 0.00407719 0.999992i \(-0.498702\pi\)
0.00407719 + 0.999992i \(0.498702\pi\)
\(878\) 1.74771e13 0.992529
\(879\) 9.28450e11 0.0524576
\(880\) 2.68291e12 0.150811
\(881\) 9.76224e12 0.545956 0.272978 0.962020i \(-0.411991\pi\)
0.272978 + 0.962020i \(0.411991\pi\)
\(882\) 4.28609e12 0.238481
\(883\) 2.76372e13 1.52992 0.764962 0.644075i \(-0.222757\pi\)
0.764962 + 0.644075i \(0.222757\pi\)
\(884\) 7.37442e11 0.0406156
\(885\) 5.80361e13 3.18020
\(886\) 1.75263e13 0.955517
\(887\) 2.27482e13 1.23393 0.616966 0.786990i \(-0.288362\pi\)
0.616966 + 0.786990i \(0.288362\pi\)
\(888\) 1.26834e12 0.0684507
\(889\) 4.25135e13 2.28281
\(890\) 2.82946e13 1.51164
\(891\) 1.93952e12 0.103097
\(892\) 2.96706e11 0.0156922
\(893\) 1.27088e10 0.000668764 0
\(894\) −2.97611e13 −1.55822
\(895\) −2.27922e13 −1.18736
\(896\) 2.93335e13 1.52047
\(897\) −4.74453e12 −0.244696
\(898\) −9.12547e12 −0.468287
\(899\) −1.19609e13 −0.610722
\(900\) 9.00372e11 0.0457437
\(901\) −8.97862e12 −0.453887
\(902\) −2.27486e12 −0.114426
\(903\) −2.94729e13 −1.47512
\(904\) 1.41813e13 0.706248
\(905\) 5.20674e11 0.0258017
\(906\) 2.35117e13 1.15933
\(907\) 5.97360e12 0.293092 0.146546 0.989204i \(-0.453184\pi\)
0.146546 + 0.989204i \(0.453184\pi\)
\(908\) −1.20454e12 −0.0588078
\(909\) −1.57955e11 −0.00767354
\(910\) 4.57855e13 2.21331
\(911\) −3.67352e13 −1.76706 −0.883528 0.468379i \(-0.844838\pi\)
−0.883528 + 0.468379i \(0.844838\pi\)
\(912\) 2.52045e10 0.00120643
\(913\) −3.17932e12 −0.151431
\(914\) 1.28862e13 0.610757
\(915\) −7.45401e13 −3.51557
\(916\) 1.47224e12 0.0690952
\(917\) 4.25234e13 1.98594
\(918\) −7.37897e12 −0.342928
\(919\) −3.98052e13 −1.84086 −0.920429 0.390910i \(-0.872160\pi\)
−0.920429 + 0.390910i \(0.872160\pi\)
\(920\) 7.30913e12 0.336372
\(921\) −7.27876e12 −0.333341
\(922\) −4.39707e12 −0.200389
\(923\) 2.16608e12 0.0982353
\(924\) −3.03140e11 −0.0136810
\(925\) −2.26148e12 −0.101567
\(926\) 2.00681e13 0.896927
\(927\) −6.27208e12 −0.278967
\(928\) −8.70062e12 −0.385110
\(929\) −4.51327e12 −0.198802 −0.0994010 0.995047i \(-0.531693\pi\)
−0.0994010 + 0.995047i \(0.531693\pi\)
\(930\) −1.43665e13 −0.629766
\(931\) −1.83100e10 −0.000798759 0
\(932\) 2.12631e12 0.0923112
\(933\) −3.55037e13 −1.53393
\(934\) 6.35366e12 0.273189
\(935\) −1.28747e12 −0.0550917
\(936\) −5.96059e12 −0.253833
\(937\) 3.40701e13 1.44393 0.721964 0.691930i \(-0.243239\pi\)
0.721964 + 0.691930i \(0.243239\pi\)
\(938\) 1.09665e12 0.0462546
\(939\) −4.95961e13 −2.08187
\(940\) −2.75253e12 −0.114989
\(941\) 3.85951e12 0.160464 0.0802322 0.996776i \(-0.474434\pi\)
0.0802322 + 0.996776i \(0.474434\pi\)
\(942\) 2.37545e13 0.982915
\(943\) −6.85241e12 −0.282189
\(944\) −4.67608e13 −1.91649
\(945\) −4.33553e13 −1.76847
\(946\) 2.15210e12 0.0873679
\(947\) −5.45263e12 −0.220308 −0.110154 0.993915i \(-0.535134\pi\)
−0.110154 + 0.993915i \(0.535134\pi\)
\(948\) −1.66084e12 −0.0667869
\(949\) −2.05741e13 −0.823422
\(950\) −4.06447e10 −0.00161900
\(951\) −4.22299e13 −1.67420
\(952\) −1.28485e13 −0.506974
\(953\) −1.58521e13 −0.622542 −0.311271 0.950321i \(-0.600755\pi\)
−0.311271 + 0.950321i \(0.600755\pi\)
\(954\) −8.47109e12 −0.331109
\(955\) −1.78449e13 −0.694224
\(956\) 2.98530e12 0.115592
\(957\) −4.65826e12 −0.179523
\(958\) 6.90482e12 0.264855
\(959\) 6.99817e12 0.267178
\(960\) 4.17750e13 1.58744
\(961\) −2.35567e13 −0.890963
\(962\) −1.74754e12 −0.0657869
\(963\) −5.84851e12 −0.219143
\(964\) −2.61805e12 −0.0976410
\(965\) 1.19548e13 0.443781
\(966\) −9.64908e12 −0.356524
\(967\) −2.12205e13 −0.780435 −0.390218 0.920723i \(-0.627600\pi\)
−0.390218 + 0.920723i \(0.627600\pi\)
\(968\) 2.55191e13 0.934170
\(969\) −1.20951e10 −0.000440709 0
\(970\) 4.18288e13 1.51706
\(971\) −1.93515e13 −0.698601 −0.349300 0.937011i \(-0.613581\pi\)
−0.349300 + 0.937011i \(0.613581\pi\)
\(972\) −1.57044e12 −0.0564318
\(973\) 6.95614e13 2.48806
\(974\) −1.96553e13 −0.699786
\(975\) 4.89543e13 1.73488
\(976\) 6.00583e13 2.11860
\(977\) −4.73169e13 −1.66146 −0.830732 0.556672i \(-0.812078\pi\)
−0.830732 + 0.556672i \(0.812078\pi\)
\(978\) −5.41161e13 −1.89148
\(979\) −2.21127e12 −0.0769343
\(980\) 3.96567e12 0.137341
\(981\) −1.14412e13 −0.394423
\(982\) 5.47523e13 1.87889
\(983\) −3.20581e12 −0.109508 −0.0547542 0.998500i \(-0.517438\pi\)
−0.0547542 + 0.998500i \(0.517438\pi\)
\(984\) −3.96538e13 −1.34836
\(985\) 3.37978e12 0.114400
\(986\) 2.30463e13 0.776524
\(987\) −3.11303e13 −1.04414
\(988\) −2.97225e9 −9.92382e−5 0
\(989\) 6.48262e12 0.215460
\(990\) −1.21470e12 −0.0401892
\(991\) −3.75990e13 −1.23835 −0.619177 0.785252i \(-0.712534\pi\)
−0.619177 + 0.785252i \(0.712534\pi\)
\(992\) 2.09709e12 0.0687565
\(993\) 6.51842e12 0.212751
\(994\) 4.40522e12 0.143129
\(995\) −3.19384e13 −1.03302
\(996\) 6.46894e12 0.208289
\(997\) −3.65301e13 −1.17091 −0.585453 0.810706i \(-0.699083\pi\)
−0.585453 + 0.810706i \(0.699083\pi\)
\(998\) 4.08869e13 1.30466
\(999\) 1.65478e12 0.0525650
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.10.a.b.1.57 76
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.10.a.b.1.57 76 1.1 even 1 trivial