L(s) = 1 | + 5-s − 7-s + 9-s + 19-s + 31-s − 35-s − 41-s + 45-s + 2·47-s + 59-s − 63-s − 2·67-s − 71-s + 81-s + 95-s − 97-s + 101-s − 103-s + 107-s + 109-s − 113-s + ⋯ |
L(s) = 1 | + 5-s − 7-s + 9-s + 19-s + 31-s − 35-s − 41-s + 45-s + 2·47-s + 59-s − 63-s − 2·67-s − 71-s + 81-s + 95-s − 97-s + 101-s − 103-s + 107-s + 109-s − 113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.363970609\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.363970609\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 31 | \( 1 - T \) |
good | 3 | \( ( 1 - T )( 1 + T ) \) |
| 5 | \( 1 - T + T^{2} \) |
| 7 | \( 1 + T + T^{2} \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( ( 1 - T )^{2} \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( 1 - T + T^{2} \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( ( 1 + T )^{2} \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( 1 + T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.498562370271284513168455392276, −8.809220719804173880707610068874, −7.63587780772854693400670068344, −6.93801372505915564084401401634, −6.20032309942401690853112582952, −5.49393077538779529026821463484, −4.47888650250490094258310220839, −3.45949718743552220459799941634, −2.47767351245492657633422028026, −1.29804537939601829628431090955,
1.29804537939601829628431090955, 2.47767351245492657633422028026, 3.45949718743552220459799941634, 4.47888650250490094258310220839, 5.49393077538779529026821463484, 6.20032309942401690853112582952, 6.93801372505915564084401401634, 7.63587780772854693400670068344, 8.809220719804173880707610068874, 9.498562370271284513168455392276