L(s) = 1 | + 5-s − 7-s + 9-s + 19-s + 31-s − 35-s − 41-s + 45-s + 2·47-s + 59-s − 63-s − 2·67-s − 71-s + 81-s + 95-s − 97-s + 101-s − 103-s + 107-s + 109-s − 113-s + ⋯ |
L(s) = 1 | + 5-s − 7-s + 9-s + 19-s + 31-s − 35-s − 41-s + 45-s + 2·47-s + 59-s − 63-s − 2·67-s − 71-s + 81-s + 95-s − 97-s + 101-s − 103-s + 107-s + 109-s − 113-s + ⋯ |
Λ(s)=(=(1984s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(1984s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
1984
= 26⋅31
|
Sign: |
1
|
Analytic conductor: |
0.990144 |
Root analytic conductor: |
0.995060 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ1984(1921,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 1984, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.363970609 |
L(21) |
≈ |
1.363970609 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 31 | 1−T |
good | 3 | (1−T)(1+T) |
| 5 | 1−T+T2 |
| 7 | 1+T+T2 |
| 11 | (1−T)(1+T) |
| 13 | (1−T)(1+T) |
| 17 | (1−T)(1+T) |
| 19 | 1−T+T2 |
| 23 | (1−T)(1+T) |
| 29 | (1−T)(1+T) |
| 37 | (1−T)(1+T) |
| 41 | 1+T+T2 |
| 43 | (1−T)(1+T) |
| 47 | (1−T)2 |
| 53 | (1−T)(1+T) |
| 59 | 1−T+T2 |
| 61 | (1−T)(1+T) |
| 67 | (1+T)2 |
| 71 | 1+T+T2 |
| 73 | (1−T)(1+T) |
| 79 | (1−T)(1+T) |
| 83 | (1−T)(1+T) |
| 89 | (1−T)(1+T) |
| 97 | 1+T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.498562370271284513168455392276, −8.809220719804173880707610068874, −7.63587780772854693400670068344, −6.93801372505915564084401401634, −6.20032309942401690853112582952, −5.49393077538779529026821463484, −4.47888650250490094258310220839, −3.45949718743552220459799941634, −2.47767351245492657633422028026, −1.29804537939601829628431090955,
1.29804537939601829628431090955, 2.47767351245492657633422028026, 3.45949718743552220459799941634, 4.47888650250490094258310220839, 5.49393077538779529026821463484, 6.20032309942401690853112582952, 6.93801372505915564084401401634, 7.63587780772854693400670068344, 8.809220719804173880707610068874, 9.498562370271284513168455392276