Dirichlet series
L(s) = 1 | + 4.19e6·2-s − 2.23e10·3-s + 1.31e13·4-s − 4.73e13·5-s − 9.37e16·6-s − 2.22e17·7-s + 3.68e19·8-s + 1.92e20·9-s − 1.98e20·10-s − 4.18e22·11-s − 2.94e23·12-s − 1.51e24·13-s − 9.33e23·14-s + 1.05e24·15-s + 9.67e25·16-s − 6.73e25·17-s + 8.07e26·18-s + 1.23e27·19-s − 6.24e26·20-s + 4.97e27·21-s − 1.75e29·22-s + 3.81e28·23-s − 8.24e29·24-s − 2.09e30·25-s − 6.33e30·26-s − 4.78e30·27-s − 2.93e30·28-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 1.23·3-s + 3/2·4-s − 0.0443·5-s − 1.74·6-s − 0.150·7-s + 1.41·8-s + 0.586·9-s − 0.0627·10-s − 1.70·11-s − 1.84·12-s − 1.69·13-s − 0.212·14-s + 0.0547·15-s + 5/4·16-s − 0.236·17-s + 0.829·18-s + 0.395·19-s − 0.0665·20-s + 0.185·21-s − 2.41·22-s + 0.201·23-s − 1.74·24-s − 1.84·25-s − 2.39·26-s − 0.805·27-s − 0.225·28-s + ⋯ |
Functional equation
Invariants
Degree: | \(4\) |
Conductor: | \(4\) = \(2^{2}\) |
Sign: | $1$ |
Analytic conductor: | \(548.593\) |
Root analytic conductor: | \(4.83963\) |
Motivic weight: | \(43\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(2\) |
Selberg data: | \((4,\ 4,\ (\ :43/2, 43/2),\ 1)\) |
Particular Values
\(L(22)\) | \(=\) | \(0\) |
\(L(\frac12)\) | \(=\) | \(0\) |
\(L(\frac{45}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $\Gal(F_p)$ | $F_p(T)$ | |
---|---|---|---|
bad | 2 | $C_1$ | \( ( 1 - p^{21} T )^{2} \) |
good | 3 | $D_{4}$ | \( 1 + 827467928 p^{3} T + 192265902511906 p^{13} T^{2} + 827467928 p^{46} T^{3} + p^{86} T^{4} \) |
5 | $D_{4}$ | \( 1 + 9464131679604 p T + \)\(26\!\cdots\!26\)\( p^{7} T^{2} + 9464131679604 p^{44} T^{3} + p^{86} T^{4} \) | |
7 | $D_{4}$ | \( 1 + 31780018763862704 p T + \)\(29\!\cdots\!82\)\( p^{4} T^{2} + 31780018763862704 p^{44} T^{3} + p^{86} T^{4} \) | |
11 | $D_{4}$ | \( 1 + \)\(38\!\cdots\!56\)\( p T + \)\(10\!\cdots\!86\)\( p^{4} T^{2} + \)\(38\!\cdots\!56\)\( p^{44} T^{3} + p^{86} T^{4} \) | |
13 | $D_{4}$ | \( 1 + \)\(15\!\cdots\!96\)\( T + \)\(12\!\cdots\!42\)\( p^{2} T^{2} + \)\(15\!\cdots\!96\)\( p^{43} T^{3} + p^{86} T^{4} \) | |
17 | $D_{4}$ | \( 1 + \)\(39\!\cdots\!44\)\( p T + \)\(14\!\cdots\!54\)\( p^{3} T^{2} + \)\(39\!\cdots\!44\)\( p^{44} T^{3} + p^{86} T^{4} \) | |
19 | $D_{4}$ | \( 1 - \)\(64\!\cdots\!60\)\( p T + \)\(28\!\cdots\!02\)\( p^{3} T^{2} - \)\(64\!\cdots\!60\)\( p^{44} T^{3} + p^{86} T^{4} \) | |
23 | $D_{4}$ | \( 1 - \)\(38\!\cdots\!24\)\( T + \)\(93\!\cdots\!86\)\( p T^{2} - \)\(38\!\cdots\!24\)\( p^{43} T^{3} + p^{86} T^{4} \) | |
29 | $D_{4}$ | \( 1 + \)\(72\!\cdots\!00\)\( T + \)\(30\!\cdots\!58\)\( p^{2} T^{2} + \)\(72\!\cdots\!00\)\( p^{43} T^{3} + p^{86} T^{4} \) | |
31 | $D_{4}$ | \( 1 - \)\(40\!\cdots\!24\)\( T + \)\(40\!\cdots\!46\)\( p T^{2} - \)\(40\!\cdots\!24\)\( p^{43} T^{3} + p^{86} T^{4} \) | |
37 | $D_{4}$ | \( 1 - \)\(33\!\cdots\!52\)\( T + \)\(36\!\cdots\!86\)\( p T^{2} - \)\(33\!\cdots\!52\)\( p^{43} T^{3} + p^{86} T^{4} \) | |
41 | $D_{4}$ | \( 1 + \)\(14\!\cdots\!56\)\( p T + \)\(28\!\cdots\!66\)\( p^{2} T^{2} + \)\(14\!\cdots\!56\)\( p^{44} T^{3} + p^{86} T^{4} \) | |
43 | $D_{4}$ | \( 1 + \)\(28\!\cdots\!56\)\( T + \)\(53\!\cdots\!98\)\( T^{2} + \)\(28\!\cdots\!56\)\( p^{43} T^{3} + p^{86} T^{4} \) | |
47 | $D_{4}$ | \( 1 - \)\(18\!\cdots\!72\)\( T + \)\(20\!\cdots\!42\)\( T^{2} - \)\(18\!\cdots\!72\)\( p^{43} T^{3} + p^{86} T^{4} \) | |
53 | $D_{4}$ | \( 1 - \)\(13\!\cdots\!64\)\( T + \)\(32\!\cdots\!78\)\( T^{2} - \)\(13\!\cdots\!64\)\( p^{43} T^{3} + p^{86} T^{4} \) | |
59 | $D_{4}$ | \( 1 - \)\(65\!\cdots\!00\)\( T + \)\(26\!\cdots\!58\)\( T^{2} - \)\(65\!\cdots\!00\)\( p^{43} T^{3} + p^{86} T^{4} \) | |
61 | $D_{4}$ | \( 1 - \)\(84\!\cdots\!44\)\( T + \)\(10\!\cdots\!46\)\( T^{2} - \)\(84\!\cdots\!44\)\( p^{43} T^{3} + p^{86} T^{4} \) | |
67 | $D_{4}$ | \( 1 + \)\(38\!\cdots\!08\)\( T + \)\(10\!\cdots\!42\)\( T^{2} + \)\(38\!\cdots\!08\)\( p^{43} T^{3} + p^{86} T^{4} \) | |
71 | $D_{4}$ | \( 1 + \)\(45\!\cdots\!96\)\( T + \)\(76\!\cdots\!26\)\( T^{2} + \)\(45\!\cdots\!96\)\( p^{43} T^{3} + p^{86} T^{4} \) | |
73 | $D_{4}$ | \( 1 + \)\(10\!\cdots\!56\)\( T + \)\(20\!\cdots\!18\)\( T^{2} + \)\(10\!\cdots\!56\)\( p^{43} T^{3} + p^{86} T^{4} \) | |
79 | $D_{4}$ | \( 1 - \)\(10\!\cdots\!20\)\( T + \)\(10\!\cdots\!78\)\( T^{2} - \)\(10\!\cdots\!20\)\( p^{43} T^{3} + p^{86} T^{4} \) | |
83 | $D_{4}$ | \( 1 + \)\(99\!\cdots\!56\)\( T + \)\(45\!\cdots\!58\)\( T^{2} + \)\(99\!\cdots\!56\)\( p^{43} T^{3} + p^{86} T^{4} \) | |
89 | $D_{4}$ | \( 1 - \)\(17\!\cdots\!20\)\( T + \)\(11\!\cdots\!38\)\( T^{2} - \)\(17\!\cdots\!20\)\( p^{43} T^{3} + p^{86} T^{4} \) | |
97 | $D_{4}$ | \( 1 + \)\(36\!\cdots\!88\)\( T - \)\(10\!\cdots\!18\)\( T^{2} + \)\(36\!\cdots\!88\)\( p^{43} T^{3} + p^{86} T^{4} \) | |
show more | |||
show less |
Imaginary part of the first few zeros on the critical line
−17.05310831717640847041831092823, −16.53781721056229382766065810149, −15.35850698157405772267829422091, −15.03833840870441340944184556413, −13.49444893533522421817150316312, −13.10214823697675250405292929622, −11.98324779812143640646026337515, −11.59140817763000318065709372324, −10.55575780948299638664076831589, −9.766156333591056102206689597675, −7.68880914418365397749002701642, −7.20266994926007741624699724485, −5.83719755484291900652658897519, −5.45269944989909920854280068663, −4.78468723426506706567837544926, −3.71575880151204210972812025857, −2.57961558149180729557837707894, −1.85459738274636160704058680932, 0, 0, 1.85459738274636160704058680932, 2.57961558149180729557837707894, 3.71575880151204210972812025857, 4.78468723426506706567837544926, 5.45269944989909920854280068663, 5.83719755484291900652658897519, 7.20266994926007741624699724485, 7.68880914418365397749002701642, 9.766156333591056102206689597675, 10.55575780948299638664076831589, 11.59140817763000318065709372324, 11.98324779812143640646026337515, 13.10214823697675250405292929622, 13.49444893533522421817150316312, 15.03833840870441340944184556413, 15.35850698157405772267829422091, 16.53781721056229382766065810149, 17.05310831717640847041831092823