Properties

Label 2.44.a.b
Level $2$
Weight $44$
Character orbit 2.a
Self dual yes
Analytic conductor $23.422$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2,44,Mod(1,2)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2, base_ring=CyclotomicField(1))
 
chi = DirichletCharacter(H, H._module([]))
 
N = Newforms(chi, 44, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2.1");
 
S:= CuspForms(chi, 44);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2 \)
Weight: \( k \) \(=\) \( 44 \)
Character orbit: \([\chi]\) \(=\) 2.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.4220790691\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 397496384250 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{8}\cdot 3^{3}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 17280\sqrt{1589985537001}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2097152 q^{2} + ( - \beta - 11170817028) q^{3} + 4398046511104 q^{4} + (19308 \beta - 23660329199010) q^{5} + ( - 2097152 \beta - 23\!\cdots\!56) q^{6} + (87838422 \beta - 11\!\cdots\!64) q^{7} + 92\!\cdots\!08 q^{8}+ \cdots + ( - 62\!\cdots\!95 \beta - 11\!\cdots\!56) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4194304 q^{2} - 22341634056 q^{3} + 8796093022208 q^{4} - 47320658398020 q^{5} - 46\!\cdots\!12 q^{6} - 22\!\cdots\!28 q^{7} + 18\!\cdots\!16 q^{8} + 54\!\cdots\!14 q^{9} - 99\!\cdots\!40 q^{10} - 41\!\cdots\!16 q^{11}+ \cdots - 23\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
630474.
−630473.
2.09715e6 −3.29600e10 4.39805e12 3.97045e14 −6.91221e16 1.80269e18 9.22337e18 7.58103e20 8.32663e20
1.2 2.09715e6 1.06183e10 4.39805e12 −4.44365e14 2.22683e16 −2.02515e18 9.22337e18 −2.15508e20 −9.31902e20
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2.44.a.b 2
3.b odd 2 1 18.44.a.c 2
4.b odd 2 1 16.44.a.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2.44.a.b 2 1.a even 1 1 trivial
16.44.a.b 2 4.b odd 2 1
18.44.a.c 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 22341634056T_{3} - 349979984298584645616 \) acting on \(S_{44}^{\mathrm{new}}(\Gamma_0(2))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2097152)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + \cdots - 34\!\cdots\!16 \) Copy content Toggle raw display
$5$ \( T^{2} + \cdots - 17\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 36\!\cdots\!04 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 28\!\cdots\!64 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 56\!\cdots\!04 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 90\!\cdots\!24 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 37\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 50\!\cdots\!56 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 14\!\cdots\!56 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 40\!\cdots\!24 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 35\!\cdots\!04 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 18\!\cdots\!84 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 43\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 45\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 16\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 13\!\cdots\!16 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 36\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 72\!\cdots\!96 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 64\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 27\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 20\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 18\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 64\!\cdots\!64 \) Copy content Toggle raw display
show more
show less