L(s) = 1 | − 0.618·2-s − 0.618i·3-s − 0.618·4-s + 1.61i·5-s + 0.381i·6-s + i·7-s + 8-s + 0.618·9-s − 1.00i·10-s + 0.381i·12-s − 0.618i·14-s + 1.00·15-s − 0.381·18-s − 0.999i·20-s + 0.618·21-s + ⋯ |
L(s) = 1 | − 0.618·2-s − 0.618i·3-s − 0.618·4-s + 1.61i·5-s + 0.381i·6-s + i·7-s + 8-s + 0.618·9-s − 1.00i·10-s + 0.381i·12-s − 0.618i·14-s + 1.00·15-s − 0.381·18-s − 0.999i·20-s + 0.618·21-s + ⋯ |
Λ(s)=(=(2023s/2ΓC(s)L(s)−iΛ(1−s)
Λ(s)=(=(2023s/2ΓC(s)L(s)−iΛ(1−s)
Degree: |
2 |
Conductor: |
2023
= 7⋅172
|
Sign: |
−i
|
Analytic conductor: |
1.00960 |
Root analytic conductor: |
1.00479 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2023(1735,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2023, ( :0), −i)
|
Particular Values
L(21) |
≈ |
0.6850736554 |
L(21) |
≈ |
0.6850736554 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1−iT |
| 17 | 1 |
good | 2 | 1+0.618T+T2 |
| 3 | 1+0.618iT−T2 |
| 5 | 1−1.61iT−T2 |
| 11 | 1+T2 |
| 13 | 1−T2 |
| 19 | 1−T2 |
| 23 | 1+T2 |
| 29 | 1+T2 |
| 31 | 1−1.61iT−T2 |
| 37 | 1+T2 |
| 41 | 1−0.618iT−T2 |
| 43 | 1+0.618T+T2 |
| 47 | 1−T2 |
| 53 | 1−1.61T+T2 |
| 59 | 1−T2 |
| 61 | 1−0.618iT−T2 |
| 67 | 1+1.61T+T2 |
| 71 | 1+T2 |
| 73 | 1+0.618iT−T2 |
| 79 | 1+T2 |
| 83 | 1−T2 |
| 89 | 1−T2 |
| 97 | 1−1.61iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.530149524256061558430184021143, −8.717308286078761966530515168776, −7.961484909077128434232190527719, −7.19871615981212674441257852204, −6.66056992543592197743923205830, −5.75916226514328112613533708924, −4.70230389213175719974731371294, −3.55150957332832544268050355362, −2.59033439286008265425169723469, −1.55622668146047121430898759567,
0.68141584551803872832964830496, 1.66763483875259198941601059458, 3.75714116110050099713019685473, 4.32181485230256221597820058648, 4.83839448092044101687631674856, 5.70183396207605482490342239316, 7.12391583944922861314067737597, 7.80932133243437555492443130164, 8.548110215490307501051792067808, 9.186166161128538447192956995948