L(s) = 1 | − 0.618·2-s − 0.618i·3-s − 0.618·4-s + 1.61i·5-s + 0.381i·6-s + i·7-s + 8-s + 0.618·9-s − 1.00i·10-s + 0.381i·12-s − 0.618i·14-s + 1.00·15-s − 0.381·18-s − 0.999i·20-s + 0.618·21-s + ⋯ |
L(s) = 1 | − 0.618·2-s − 0.618i·3-s − 0.618·4-s + 1.61i·5-s + 0.381i·6-s + i·7-s + 8-s + 0.618·9-s − 1.00i·10-s + 0.381i·12-s − 0.618i·14-s + 1.00·15-s − 0.381·18-s − 0.999i·20-s + 0.618·21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6850736554\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6850736554\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 - iT \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + 0.618T + T^{2} \) |
| 3 | \( 1 + 0.618iT - T^{2} \) |
| 5 | \( 1 - 1.61iT - T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - 1.61iT - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - 0.618iT - T^{2} \) |
| 43 | \( 1 + 0.618T + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - 1.61T + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 0.618iT - T^{2} \) |
| 67 | \( 1 + 1.61T + T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + 0.618iT - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - 1.61iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.530149524256061558430184021143, −8.717308286078761966530515168776, −7.961484909077128434232190527719, −7.19871615981212674441257852204, −6.66056992543592197743923205830, −5.75916226514328112613533708924, −4.70230389213175719974731371294, −3.55150957332832544268050355362, −2.59033439286008265425169723469, −1.55622668146047121430898759567,
0.68141584551803872832964830496, 1.66763483875259198941601059458, 3.75714116110050099713019685473, 4.32181485230256221597820058648, 4.83839448092044101687631674856, 5.70183396207605482490342239316, 7.12391583944922861314067737597, 7.80932133243437555492443130164, 8.548110215490307501051792067808, 9.186166161128538447192956995948