Properties

Label 2023.1.c.e
Level $2023$
Weight $1$
Character orbit 2023.c
Analytic conductor $1.010$
Analytic rank $0$
Dimension $4$
Projective image $D_{5}$
CM discriminant -119
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2023,1,Mod(1735,2023)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2023, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2023.1735");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2023 = 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2023.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00960852056\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 119)
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.14161.1
Artin image: $C_4\times D_5$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{20} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} - \beta_1 q^{3} - \beta_{2} q^{4} + (\beta_{3} + \beta_1) q^{5} + (\beta_{3} - \beta_1) q^{6} + \beta_{3} q^{7} + q^{8} + \beta_{2} q^{9} - \beta_{3} q^{10} + (\beta_{3} - \beta_1) q^{12}+ \cdots + \beta_{2} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 2 q^{4} + 4 q^{8} - 2 q^{9} + 4 q^{15} - 6 q^{18} - 2 q^{21} - 2 q^{25} + 2 q^{30} - 4 q^{32} - 2 q^{35} - 6 q^{36} - 6 q^{42} + 2 q^{43} - 4 q^{49} + 4 q^{50} + 2 q^{53} + 2 q^{60} - 2 q^{64}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 3x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 2\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2023\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(1737\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1735.1
0.618034i
0.618034i
1.61803i
1.61803i
−0.618034 0.618034i −0.618034 1.61803i 0.381966i 1.00000i 1.00000 0.618034 1.00000i
1735.2 −0.618034 0.618034i −0.618034 1.61803i 0.381966i 1.00000i 1.00000 0.618034 1.00000i
1735.3 1.61803 1.61803i 1.61803 0.618034i 2.61803i 1.00000i 1.00000 −1.61803 1.00000i
1735.4 1.61803 1.61803i 1.61803 0.618034i 2.61803i 1.00000i 1.00000 −1.61803 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
119.d odd 2 1 CM by \(\Q(\sqrt{-119}) \)
7.b odd 2 1 inner
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2023.1.c.e 4
7.b odd 2 1 inner 2023.1.c.e 4
17.b even 2 1 inner 2023.1.c.e 4
17.c even 4 1 119.1.d.a 2
17.c even 4 1 119.1.d.b yes 2
17.d even 8 4 2023.1.f.b 8
17.e odd 16 8 2023.1.l.b 16
51.f odd 4 1 1071.1.h.a 2
51.f odd 4 1 1071.1.h.b 2
68.f odd 4 1 1904.1.n.a 2
68.f odd 4 1 1904.1.n.b 2
85.f odd 4 1 2975.1.b.a 4
85.f odd 4 1 2975.1.b.b 4
85.i odd 4 1 2975.1.b.a 4
85.i odd 4 1 2975.1.b.b 4
85.j even 4 1 2975.1.h.c 2
85.j even 4 1 2975.1.h.d 2
119.d odd 2 1 CM 2023.1.c.e 4
119.f odd 4 1 119.1.d.a 2
119.f odd 4 1 119.1.d.b yes 2
119.l odd 8 4 2023.1.f.b 8
119.m odd 12 2 833.1.h.a 4
119.m odd 12 2 833.1.h.b 4
119.n even 12 2 833.1.h.a 4
119.n even 12 2 833.1.h.b 4
119.p even 16 8 2023.1.l.b 16
357.l even 4 1 1071.1.h.a 2
357.l even 4 1 1071.1.h.b 2
476.k even 4 1 1904.1.n.a 2
476.k even 4 1 1904.1.n.b 2
595.l even 4 1 2975.1.b.a 4
595.l even 4 1 2975.1.b.b 4
595.r even 4 1 2975.1.b.a 4
595.r even 4 1 2975.1.b.b 4
595.u odd 4 1 2975.1.h.c 2
595.u odd 4 1 2975.1.h.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
119.1.d.a 2 17.c even 4 1
119.1.d.a 2 119.f odd 4 1
119.1.d.b yes 2 17.c even 4 1
119.1.d.b yes 2 119.f odd 4 1
833.1.h.a 4 119.m odd 12 2
833.1.h.a 4 119.n even 12 2
833.1.h.b 4 119.m odd 12 2
833.1.h.b 4 119.n even 12 2
1071.1.h.a 2 51.f odd 4 1
1071.1.h.a 2 357.l even 4 1
1071.1.h.b 2 51.f odd 4 1
1071.1.h.b 2 357.l even 4 1
1904.1.n.a 2 68.f odd 4 1
1904.1.n.a 2 476.k even 4 1
1904.1.n.b 2 68.f odd 4 1
1904.1.n.b 2 476.k even 4 1
2023.1.c.e 4 1.a even 1 1 trivial
2023.1.c.e 4 7.b odd 2 1 inner
2023.1.c.e 4 17.b even 2 1 inner
2023.1.c.e 4 119.d odd 2 1 CM
2023.1.f.b 8 17.d even 8 4
2023.1.f.b 8 119.l odd 8 4
2023.1.l.b 16 17.e odd 16 8
2023.1.l.b 16 119.p even 16 8
2975.1.b.a 4 85.f odd 4 1
2975.1.b.a 4 85.i odd 4 1
2975.1.b.a 4 595.l even 4 1
2975.1.b.a 4 595.r even 4 1
2975.1.b.b 4 85.f odd 4 1
2975.1.b.b 4 85.i odd 4 1
2975.1.b.b 4 595.l even 4 1
2975.1.b.b 4 595.r even 4 1
2975.1.h.c 2 85.j even 4 1
2975.1.h.c 2 595.u odd 4 1
2975.1.h.d 2 85.j even 4 1
2975.1.h.d 2 595.u odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2023, [\chi])\):

\( T_{2}^{2} - T_{2} - 1 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$43$ \( (T^{2} - T - 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} - T - 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$67$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
show more
show less