L(s) = 1 | + (−0.5 − 0.866i)3-s + (−1 + 1.73i)7-s + (−0.499 + 0.866i)9-s + (3 − 5.19i)17-s + (−1 + 1.73i)19-s + 1.99·21-s − 5·25-s + 0.999·27-s + (3 + 5.19i)29-s + 2·31-s + (−1 − 1.73i)37-s + (6 + 10.3i)41-s + (2 − 3.46i)43-s + (1.50 + 2.59i)49-s − 6·51-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.377 + 0.654i)7-s + (−0.166 + 0.288i)9-s + (0.727 − 1.26i)17-s + (−0.229 + 0.397i)19-s + 0.436·21-s − 25-s + 0.192·27-s + (0.557 + 0.964i)29-s + 0.359·31-s + (−0.164 − 0.284i)37-s + (0.937 + 1.62i)41-s + (0.304 − 0.528i)43-s + (0.214 + 0.371i)49-s − 0.840·51-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2028 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.872 - 0.488i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2028 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.872 - 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.322161762\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.322161762\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 \) |
good | 5 | \( 1 + 5T^{2} \) |
| 7 | \( 1 + (1 - 1.73i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-3 + 5.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1 - 1.73i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3 - 5.19i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 2T + 31T^{2} \) |
| 37 | \( 1 + (1 + 1.73i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-6 - 10.3i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 + 3.46i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + (6 - 10.3i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1 - 1.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5 - 8.66i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (6 - 10.3i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 14T + 73T^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 - 12T + 83T^{2} \) |
| 89 | \( 1 + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-5 + 8.66i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.243760010912568902037591365533, −8.374440196046065466052426888602, −7.59011098638213894290419386613, −6.87680229037414437533032846336, −5.96528201641067534523912530669, −5.42365268598637903801084274300, −4.39319859747440900322996887418, −3.16782299344602837204615425987, −2.34823047376493326616499330801, −1.00085319178041589144924190940,
0.60913896169107773097867352558, 2.12979591817287860065275745328, 3.49523214166273476029267499505, 4.04187562692168797128792034790, 5.01123426105569227446842105466, 5.99346589870274352267000065110, 6.53862175127387055651464783190, 7.62380026856888269742888722969, 8.229923262473455737588904134127, 9.260358535321253297364560631877