L(s) = 1 | + (−0.5 − 0.866i)3-s + (−1 + 1.73i)7-s + (−0.499 + 0.866i)9-s + (3 − 5.19i)17-s + (−1 + 1.73i)19-s + 1.99·21-s − 5·25-s + 0.999·27-s + (3 + 5.19i)29-s + 2·31-s + (−1 − 1.73i)37-s + (6 + 10.3i)41-s + (2 − 3.46i)43-s + (1.50 + 2.59i)49-s − 6·51-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.377 + 0.654i)7-s + (−0.166 + 0.288i)9-s + (0.727 − 1.26i)17-s + (−0.229 + 0.397i)19-s + 0.436·21-s − 25-s + 0.192·27-s + (0.557 + 0.964i)29-s + 0.359·31-s + (−0.164 − 0.284i)37-s + (0.937 + 1.62i)41-s + (0.304 − 0.528i)43-s + (0.214 + 0.371i)49-s − 0.840·51-s + ⋯ |
Λ(s)=(=(2028s/2ΓC(s)L(s)(0.872−0.488i)Λ(2−s)
Λ(s)=(=(2028s/2ΓC(s+1/2)L(s)(0.872−0.488i)Λ(1−s)
Degree: |
2 |
Conductor: |
2028
= 22⋅3⋅132
|
Sign: |
0.872−0.488i
|
Analytic conductor: |
16.1936 |
Root analytic conductor: |
4.02413 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2028(2005,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2028, ( :1/2), 0.872−0.488i)
|
Particular Values
L(1) |
≈ |
1.322161762 |
L(21) |
≈ |
1.322161762 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.5+0.866i)T |
| 13 | 1 |
good | 5 | 1+5T2 |
| 7 | 1+(1−1.73i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−5.5+9.52i)T2 |
| 17 | 1+(−3+5.19i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1−1.73i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−11.5+19.9i)T2 |
| 29 | 1+(−3−5.19i)T+(−14.5+25.1i)T2 |
| 31 | 1−2T+31T2 |
| 37 | 1+(1+1.73i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−6−10.3i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−2+3.46i)T+(−21.5−37.2i)T2 |
| 47 | 1+47T2 |
| 53 | 1−6T+53T2 |
| 59 | 1+(6−10.3i)T+(−29.5−51.0i)T2 |
| 61 | 1+(1−1.73i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−5−8.66i)T+(−33.5+58.0i)T2 |
| 71 | 1+(6−10.3i)T+(−35.5−61.4i)T2 |
| 73 | 1−14T+73T2 |
| 79 | 1−8T+79T2 |
| 83 | 1−12T+83T2 |
| 89 | 1+(−44.5+77.0i)T2 |
| 97 | 1+(−5+8.66i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.243760010912568902037591365533, −8.374440196046065466052426888602, −7.59011098638213894290419386613, −6.87680229037414437533032846336, −5.96528201641067534523912530669, −5.42365268598637903801084274300, −4.39319859747440900322996887418, −3.16782299344602837204615425987, −2.34823047376493326616499330801, −1.00085319178041589144924190940,
0.60913896169107773097867352558, 2.12979591817287860065275745328, 3.49523214166273476029267499505, 4.04187562692168797128792034790, 5.01123426105569227446842105466, 5.99346589870274352267000065110, 6.53862175127387055651464783190, 7.62380026856888269742888722969, 8.229923262473455737588904134127, 9.260358535321253297364560631877