Properties

Label 2028.2.i.b
Level 20282028
Weight 22
Character orbit 2028.i
Analytic conductor 16.19416.194
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2028,2,Mod(529,2028)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2028, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2028.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2028=223132 2028 = 2^{2} \cdot 3 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2028.i (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 16.193661529916.1936615299
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 156)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ61)q32ζ6q7ζ6q9+6ζ6q172ζ6q19+2q215q25+q27+(6ζ6+6)q29+2q31+(2ζ62)q37++10ζ6q97+O(q100) q + (\zeta_{6} - 1) q^{3} - 2 \zeta_{6} q^{7} - \zeta_{6} q^{9} + 6 \zeta_{6} q^{17} - 2 \zeta_{6} q^{19} + 2 q^{21} - 5 q^{25} + q^{27} + ( - 6 \zeta_{6} + 6) q^{29} + 2 q^{31} + (2 \zeta_{6} - 2) q^{37} + \cdots + 10 \zeta_{6} q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq32q7q9+6q172q19+4q2110q25+2q27+6q29+4q312q37+12q41+4q43+3q4912q51+12q53+4q5712q59++10q97+O(q100) 2 q - q^{3} - 2 q^{7} - q^{9} + 6 q^{17} - 2 q^{19} + 4 q^{21} - 10 q^{25} + 2 q^{27} + 6 q^{29} + 4 q^{31} - 2 q^{37} + 12 q^{41} + 4 q^{43} + 3 q^{49} - 12 q^{51} + 12 q^{53} + 4 q^{57} - 12 q^{59}+ \cdots + 10 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2028Z)×\left(\mathbb{Z}/2028\mathbb{Z}\right)^\times.

nn 677677 10151015 18611861
χ(n)\chi(n) 11 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
529.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −0.500000 + 0.866025i 0 0 0 −1.00000 1.73205i 0 −0.500000 0.866025i 0
2005.1 0 −0.500000 0.866025i 0 0 0 −1.00000 + 1.73205i 0 −0.500000 + 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2028.2.i.b 2
13.b even 2 1 2028.2.i.c 2
13.c even 3 1 156.2.a.b 1
13.c even 3 1 inner 2028.2.i.b 2
13.d odd 4 2 2028.2.q.d 4
13.e even 6 1 2028.2.a.e 1
13.e even 6 1 2028.2.i.c 2
13.f odd 12 2 2028.2.b.d 2
13.f odd 12 2 2028.2.q.d 4
39.h odd 6 1 6084.2.a.h 1
39.i odd 6 1 468.2.a.c 1
39.k even 12 2 6084.2.b.a 2
52.i odd 6 1 8112.2.a.i 1
52.j odd 6 1 624.2.a.b 1
65.n even 6 1 3900.2.a.a 1
65.q odd 12 2 3900.2.h.e 2
91.n odd 6 1 7644.2.a.a 1
104.n odd 6 1 2496.2.a.v 1
104.r even 6 1 2496.2.a.h 1
117.f even 3 1 4212.2.i.f 2
117.h even 3 1 4212.2.i.f 2
117.k odd 6 1 4212.2.i.g 2
117.u odd 6 1 4212.2.i.g 2
156.p even 6 1 1872.2.a.i 1
312.bh odd 6 1 7488.2.a.bf 1
312.bn even 6 1 7488.2.a.bb 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.2.a.b 1 13.c even 3 1
468.2.a.c 1 39.i odd 6 1
624.2.a.b 1 52.j odd 6 1
1872.2.a.i 1 156.p even 6 1
2028.2.a.e 1 13.e even 6 1
2028.2.b.d 2 13.f odd 12 2
2028.2.i.b 2 1.a even 1 1 trivial
2028.2.i.b 2 13.c even 3 1 inner
2028.2.i.c 2 13.b even 2 1
2028.2.i.c 2 13.e even 6 1
2028.2.q.d 4 13.d odd 4 2
2028.2.q.d 4 13.f odd 12 2
2496.2.a.h 1 104.r even 6 1
2496.2.a.v 1 104.n odd 6 1
3900.2.a.a 1 65.n even 6 1
3900.2.h.e 2 65.q odd 12 2
4212.2.i.f 2 117.f even 3 1
4212.2.i.f 2 117.h even 3 1
4212.2.i.g 2 117.k odd 6 1
4212.2.i.g 2 117.u odd 6 1
6084.2.a.h 1 39.h odd 6 1
6084.2.b.a 2 39.k even 12 2
7488.2.a.bb 1 312.bn even 6 1
7488.2.a.bf 1 312.bh odd 6 1
7644.2.a.a 1 91.n odd 6 1
8112.2.a.i 1 52.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2028,[χ])S_{2}^{\mathrm{new}}(2028, [\chi]):

T5 T_{5} Copy content Toggle raw display
T72+2T7+4 T_{7}^{2} + 2T_{7} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
1919 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
3131 (T2)2 (T - 2)^{2} Copy content Toggle raw display
3737 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
4141 T212T+144 T^{2} - 12T + 144 Copy content Toggle raw display
4343 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 (T6)2 (T - 6)^{2} Copy content Toggle raw display
5959 T2+12T+144 T^{2} + 12T + 144 Copy content Toggle raw display
6161 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
6767 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
7171 T2+12T+144 T^{2} + 12T + 144 Copy content Toggle raw display
7373 (T14)2 (T - 14)^{2} Copy content Toggle raw display
7979 (T8)2 (T - 8)^{2} Copy content Toggle raw display
8383 (T12)2 (T - 12)^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
show more
show less