Defining parameters
Level: | \( N \) | \(=\) | \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2028.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 14 \) | ||
Sturm bound: | \(728\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2028, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 812 | 54 | 758 |
Cusp forms | 644 | 54 | 590 |
Eisenstein series | 168 | 0 | 168 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2028, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(2028, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2028, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(338, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(676, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1014, [\chi])\)\(^{\oplus 2}\)