Properties

Label 2-2031-1.1-c1-0-87
Degree $2$
Conductor $2031$
Sign $-1$
Analytic cond. $16.2176$
Root an. cond. $4.02711$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.31·2-s − 3-s − 0.267·4-s − 1.10·5-s − 1.31·6-s + 1.45·7-s − 2.98·8-s + 9-s − 1.45·10-s − 0.837·11-s + 0.267·12-s + 0.345·13-s + 1.91·14-s + 1.10·15-s − 3.39·16-s + 5.10·17-s + 1.31·18-s + 5.49·19-s + 0.296·20-s − 1.45·21-s − 1.10·22-s − 1.19·23-s + 2.98·24-s − 3.77·25-s + 0.454·26-s − 27-s − 0.388·28-s + ⋯
L(s)  = 1  + 0.930·2-s − 0.577·3-s − 0.133·4-s − 0.495·5-s − 0.537·6-s + 0.549·7-s − 1.05·8-s + 0.333·9-s − 0.461·10-s − 0.252·11-s + 0.0771·12-s + 0.0957·13-s + 0.511·14-s + 0.286·15-s − 0.848·16-s + 1.23·17-s + 0.310·18-s + 1.26·19-s + 0.0662·20-s − 0.317·21-s − 0.234·22-s − 0.248·23-s + 0.609·24-s − 0.754·25-s + 0.0891·26-s − 0.192·27-s − 0.0734·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2031 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2031 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2031\)    =    \(3 \cdot 677\)
Sign: $-1$
Analytic conductor: \(16.2176\)
Root analytic conductor: \(4.02711\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2031,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
677 \( 1 + T \)
good2 \( 1 - 1.31T + 2T^{2} \)
5 \( 1 + 1.10T + 5T^{2} \)
7 \( 1 - 1.45T + 7T^{2} \)
11 \( 1 + 0.837T + 11T^{2} \)
13 \( 1 - 0.345T + 13T^{2} \)
17 \( 1 - 5.10T + 17T^{2} \)
19 \( 1 - 5.49T + 19T^{2} \)
23 \( 1 + 1.19T + 23T^{2} \)
29 \( 1 + 8.98T + 29T^{2} \)
31 \( 1 + 5.20T + 31T^{2} \)
37 \( 1 + 10.5T + 37T^{2} \)
41 \( 1 - 5.55T + 41T^{2} \)
43 \( 1 + 5.69T + 43T^{2} \)
47 \( 1 + 7.62T + 47T^{2} \)
53 \( 1 - 11.2T + 53T^{2} \)
59 \( 1 + 8.37T + 59T^{2} \)
61 \( 1 + 1.83T + 61T^{2} \)
67 \( 1 + 6.48T + 67T^{2} \)
71 \( 1 + 3.48T + 71T^{2} \)
73 \( 1 + 13.5T + 73T^{2} \)
79 \( 1 + 5.59T + 79T^{2} \)
83 \( 1 - 5.09T + 83T^{2} \)
89 \( 1 + 2.22T + 89T^{2} \)
97 \( 1 + 12.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.740557217502434325151433606708, −7.73481129018249922841399499897, −7.25820826469164465531872588672, −5.93775845532121430106839054862, −5.46460570650668121374152265103, −4.81712327348275167778247460018, −3.80152926649393509592155530451, −3.24878598301584658142093342209, −1.61347681306554310077939031531, 0, 1.61347681306554310077939031531, 3.24878598301584658142093342209, 3.80152926649393509592155530451, 4.81712327348275167778247460018, 5.46460570650668121374152265103, 5.93775845532121430106839054862, 7.25820826469164465531872588672, 7.73481129018249922841399499897, 8.740557217502434325151433606708

Graph of the $Z$-function along the critical line