Properties

Label 2031.2.a.e
Level $2031$
Weight $2$
Character orbit 2031.a
Self dual yes
Analytic conductor $16.218$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2031,2,Mod(1,2031)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2031, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2031.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2031 = 3 \cdot 677 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2031.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.2176166505\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: 7.7.32354821.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 5x^{5} + 9x^{4} + 6x^{3} - 8x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} - q^{3} + ( - \beta_{6} + \beta_{5}) q^{4} + ( - \beta_{3} + \beta_1 - 2) q^{5} - \beta_{3} q^{6} + ( - \beta_{6} + 1) q^{7} + ( - \beta_{5} + \beta_{4} - \beta_{3} - 1) q^{8} + q^{9}+ \cdots + ( - \beta_{6} + \beta_{5} + \beta_{3} + \cdots + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 2 q^{2} - 7 q^{3} + 2 q^{4} - 10 q^{5} + 2 q^{6} + 8 q^{7} - 3 q^{8} + 7 q^{9} - 8 q^{10} + 10 q^{11} - 2 q^{12} - 3 q^{13} - 3 q^{14} + 10 q^{15} - 12 q^{16} + 8 q^{17} - 2 q^{18} - 5 q^{19} + 4 q^{20}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 2x^{6} - 5x^{5} + 9x^{4} + 6x^{3} - 8x^{2} - x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{6} - 2\nu^{5} - 4\nu^{4} + 8\nu^{3} + 2\nu^{2} - 5\nu + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{6} - \nu^{5} - 6\nu^{4} + 4\nu^{3} + 9\nu^{2} - 2\nu - 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{6} - 2\nu^{5} - 5\nu^{4} + 8\nu^{3} + 6\nu^{2} - 4\nu \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{6} - 2\nu^{5} - 5\nu^{4} + 8\nu^{3} + 7\nu^{2} - 5\nu - 2 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \nu^{6} - 2\nu^{5} - 5\nu^{4} + 9\nu^{3} + 6\nu^{2} - 8\nu - 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - \beta_{4} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{6} - \beta_{4} + 4\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{5} - 5\beta_{4} + \beta_{2} + 5\beta _1 + 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 4\beta_{6} + \beta_{5} - 7\beta_{4} + \beta_{3} + \beta_{2} + 16\beta _1 + 7 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 16\beta_{5} - 24\beta_{4} + 2\beta_{3} + 7\beta_{2} + 23\beta _1 + 29 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.81900
1.91178
0.360155
−0.401414
−1.08782
2.20829
0.828008
−2.20690 −1.00000 2.87039 −1.61210 2.20690 0.450247 −1.92086 1.00000 3.55774
1.2 −1.84468 −1.00000 1.40285 1.75647 1.84468 1.52307 1.10155 1.00000 −3.24012
1.3 −1.47087 −1.00000 0.163459 −0.168975 1.47087 3.77659 2.70131 1.00000 0.248541
1.4 −0.146874 −1.00000 −1.97843 −2.25454 0.146874 −1.49119 0.584326 1.00000 0.331132
1.5 0.455154 −1.00000 −1.79283 −3.54297 −0.455154 0.0807299 −1.72633 1.00000 −1.61260
1.6 1.31629 −1.00000 −0.267381 −1.10800 −1.31629 1.45284 −2.98453 1.00000 −1.45845
1.7 1.89788 −1.00000 1.60194 −3.06987 −1.89788 2.20772 −0.755467 1.00000 −5.82624
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(677\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2031.2.a.e 7
3.b odd 2 1 6093.2.a.i 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2031.2.a.e 7 1.a even 1 1 trivial
6093.2.a.i 7 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2031))\):

\( T_{2}^{7} + 2T_{2}^{6} - 6T_{2}^{5} - 11T_{2}^{4} + 10T_{2}^{3} + 14T_{2}^{2} - 5T_{2} - 1 \) Copy content Toggle raw display
\( T_{7}^{7} - 8T_{7}^{6} + 19T_{7}^{5} - 4T_{7}^{4} - 40T_{7}^{3} + 48T_{7}^{2} - 16T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} + 2 T^{6} + \cdots - 1 \) Copy content Toggle raw display
$3$ \( (T + 1)^{7} \) Copy content Toggle raw display
$5$ \( T^{7} + 10 T^{6} + \cdots - 13 \) Copy content Toggle raw display
$7$ \( T^{7} - 8 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{7} - 10 T^{6} + \cdots - 52 \) Copy content Toggle raw display
$13$ \( T^{7} + 3 T^{6} + \cdots + 53 \) Copy content Toggle raw display
$17$ \( T^{7} - 8 T^{6} + \cdots + 491 \) Copy content Toggle raw display
$19$ \( T^{7} + 5 T^{6} + \cdots + 3361 \) Copy content Toggle raw display
$23$ \( T^{7} + T^{6} + \cdots + 64 \) Copy content Toggle raw display
$29$ \( T^{7} - 5 T^{6} + \cdots + 10211 \) Copy content Toggle raw display
$31$ \( T^{7} + 24 T^{6} + \cdots + 5123 \) Copy content Toggle raw display
$37$ \( T^{7} + 26 T^{6} + \cdots - 109 \) Copy content Toggle raw display
$41$ \( T^{7} + 12 T^{6} + \cdots - 16384 \) Copy content Toggle raw display
$43$ \( T^{7} + 26 T^{6} + \cdots + 64831 \) Copy content Toggle raw display
$47$ \( T^{7} - 2 T^{6} + \cdots - 681236 \) Copy content Toggle raw display
$53$ \( T^{7} - 16 T^{6} + \cdots - 23923 \) Copy content Toggle raw display
$59$ \( T^{7} + 17 T^{6} + \cdots + 83 \) Copy content Toggle raw display
$61$ \( T^{7} + 10 T^{6} + \cdots + 38876 \) Copy content Toggle raw display
$67$ \( T^{7} - 20 T^{6} + \cdots + 242153 \) Copy content Toggle raw display
$71$ \( T^{7} + 5 T^{6} + \cdots - 11239 \) Copy content Toggle raw display
$73$ \( T^{7} + 13 T^{6} + \cdots - 1792972 \) Copy content Toggle raw display
$79$ \( T^{7} + 32 T^{6} + \cdots - 163148 \) Copy content Toggle raw display
$83$ \( T^{7} - 11 T^{6} + \cdots + 5492 \) Copy content Toggle raw display
$89$ \( T^{7} + 8 T^{6} + \cdots - 4 \) Copy content Toggle raw display
$97$ \( T^{7} + 41 T^{6} + \cdots + 1612139 \) Copy content Toggle raw display
show more
show less