L(s) = 1 | − i·2-s − 4-s + 5-s − 2.68i·7-s + i·8-s − i·10-s + 1.73·11-s − 2.55·13-s − 2.68·14-s + 16-s + 1.27·17-s − 1.40i·19-s − 20-s − 1.73i·22-s + (−4.59 − 1.35i)23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + 0.447·5-s − 1.01i·7-s + 0.353i·8-s − 0.316i·10-s + 0.521·11-s − 0.708·13-s − 0.718·14-s + 0.250·16-s + 0.308·17-s − 0.322i·19-s − 0.223·20-s − 0.369i·22-s + (−0.958 − 0.283i)23-s + ⋯ |
Λ(s)=(=(2070s/2ΓC(s)L(s)(−0.946+0.322i)Λ(2−s)
Λ(s)=(=(2070s/2ΓC(s+1/2)L(s)(−0.946+0.322i)Λ(1−s)
Degree: |
2 |
Conductor: |
2070
= 2⋅32⋅5⋅23
|
Sign: |
−0.946+0.322i
|
Analytic conductor: |
16.5290 |
Root analytic conductor: |
4.06559 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2070(1241,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2070, ( :1/2), −0.946+0.322i)
|
Particular Values
L(1) |
≈ |
1.294465837 |
L(21) |
≈ |
1.294465837 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 3 | 1 |
| 5 | 1−T |
| 23 | 1+(4.59+1.35i)T |
good | 7 | 1+2.68iT−7T2 |
| 11 | 1−1.73T+11T2 |
| 13 | 1+2.55T+13T2 |
| 17 | 1−1.27T+17T2 |
| 19 | 1+1.40iT−19T2 |
| 29 | 1+9.62iT−29T2 |
| 31 | 1+1.47T+31T2 |
| 37 | 1−4.20iT−37T2 |
| 41 | 1+3.40iT−41T2 |
| 43 | 1+2.35iT−43T2 |
| 47 | 1+3.21iT−47T2 |
| 53 | 1+1.80T+53T2 |
| 59 | 1+7.74iT−59T2 |
| 61 | 1−6.78iT−61T2 |
| 67 | 1−7.71iT−67T2 |
| 71 | 1+4.44iT−71T2 |
| 73 | 1+1.36T+73T2 |
| 79 | 1+10.0iT−79T2 |
| 83 | 1+8.67T+83T2 |
| 89 | 1+3.72T+89T2 |
| 97 | 1−7.03iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.947455609607528038135285832009, −8.038617373348454444023898560058, −7.27648157257700152034837893807, −6.40700132137174609238873836026, −5.48439437851036014285344486207, −4.44616670176825475962816995482, −3.87260971201880854733515701081, −2.71566831222279973818818641889, −1.71695228659978005802234792006, −0.45643038304145743228205748372,
1.53922462560733713374670401107, 2.69423254933840803225563159868, 3.80596754837312023872675653378, 4.92691814994740456156901265651, 5.58609203718777254784431579386, 6.24534452960828756524433084612, 7.08674371475629857969270988032, 7.897269239603651747758440526131, 8.730603698478087148794163567388, 9.330074453749486527026452046546