Properties

Label 2-2070-69.68-c1-0-29
Degree $2$
Conductor $2070$
Sign $-0.946 + 0.322i$
Analytic cond. $16.5290$
Root an. cond. $4.06559$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s + 5-s − 2.68i·7-s + i·8-s i·10-s + 1.73·11-s − 2.55·13-s − 2.68·14-s + 16-s + 1.27·17-s − 1.40i·19-s − 20-s − 1.73i·22-s + (−4.59 − 1.35i)23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s + 0.447·5-s − 1.01i·7-s + 0.353i·8-s − 0.316i·10-s + 0.521·11-s − 0.708·13-s − 0.718·14-s + 0.250·16-s + 0.308·17-s − 0.322i·19-s − 0.223·20-s − 0.369i·22-s + (−0.958 − 0.283i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2070 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.946 + 0.322i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2070 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.946 + 0.322i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2070\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 23\)
Sign: $-0.946 + 0.322i$
Analytic conductor: \(16.5290\)
Root analytic conductor: \(4.06559\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2070} (1241, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2070,\ (\ :1/2),\ -0.946 + 0.322i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.294465837\)
\(L(\frac12)\) \(\approx\) \(1.294465837\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
5 \( 1 - T \)
23 \( 1 + (4.59 + 1.35i)T \)
good7 \( 1 + 2.68iT - 7T^{2} \)
11 \( 1 - 1.73T + 11T^{2} \)
13 \( 1 + 2.55T + 13T^{2} \)
17 \( 1 - 1.27T + 17T^{2} \)
19 \( 1 + 1.40iT - 19T^{2} \)
29 \( 1 + 9.62iT - 29T^{2} \)
31 \( 1 + 1.47T + 31T^{2} \)
37 \( 1 - 4.20iT - 37T^{2} \)
41 \( 1 + 3.40iT - 41T^{2} \)
43 \( 1 + 2.35iT - 43T^{2} \)
47 \( 1 + 3.21iT - 47T^{2} \)
53 \( 1 + 1.80T + 53T^{2} \)
59 \( 1 + 7.74iT - 59T^{2} \)
61 \( 1 - 6.78iT - 61T^{2} \)
67 \( 1 - 7.71iT - 67T^{2} \)
71 \( 1 + 4.44iT - 71T^{2} \)
73 \( 1 + 1.36T + 73T^{2} \)
79 \( 1 + 10.0iT - 79T^{2} \)
83 \( 1 + 8.67T + 83T^{2} \)
89 \( 1 + 3.72T + 89T^{2} \)
97 \( 1 - 7.03iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.947455609607528038135285832009, −8.038617373348454444023898560058, −7.27648157257700152034837893807, −6.40700132137174609238873836026, −5.48439437851036014285344486207, −4.44616670176825475962816995482, −3.87260971201880854733515701081, −2.71566831222279973818818641889, −1.71695228659978005802234792006, −0.45643038304145743228205748372, 1.53922462560733713374670401107, 2.69423254933840803225563159868, 3.80596754837312023872675653378, 4.92691814994740456156901265651, 5.58609203718777254784431579386, 6.24534452960828756524433084612, 7.08674371475629857969270988032, 7.897269239603651747758440526131, 8.730603698478087148794163567388, 9.330074453749486527026452046546

Graph of the $Z$-function along the critical line