Properties

Label 2070.2.e.b
Level 20702070
Weight 22
Character orbit 2070.e
Analytic conductor 16.52916.529
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2070,2,Mod(1241,2070)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2070, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2070.1241");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2070=232523 2070 = 2 \cdot 3^{2} \cdot 5 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2070.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 16.529033218416.5290332184
Analytic rank: 00
Dimension: 1616
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+32x14+392x12+2324x10+6930x8+9856x6+5740x4+1108x2+1 x^{16} + 32x^{14} + 392x^{12} + 2324x^{10} + 6930x^{8} + 9856x^{6} + 5740x^{4} + 1108x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a23]\Z[a_1, \ldots, a_{23}]
Coefficient ring index: 211 2^{11}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β8q2q4+q5β5q7β8q8+β8q10+(β31)q11+(β7+β2)q13+β1q14+q16+(β2β1)q17++(β15β14+β4)q98+O(q100) q + \beta_{8} q^{2} - q^{4} + q^{5} - \beta_{5} q^{7} - \beta_{8} q^{8} + \beta_{8} q^{10} + (\beta_{3} - 1) q^{11} + (\beta_{7} + \beta_{2}) q^{13} + \beta_1 q^{14} + q^{16} + (\beta_{2} - \beta_1) q^{17}+ \cdots + ( - \beta_{15} - \beta_{14} + \cdots - \beta_{4}) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q16q4+16q524q11+16q1616q204q23+16q258q318q38+24q444q4616q49+8q5324q55+16q5816q64+32q73++4q92+O(q100) 16 q - 16 q^{4} + 16 q^{5} - 24 q^{11} + 16 q^{16} - 16 q^{20} - 4 q^{23} + 16 q^{25} - 8 q^{31} - 8 q^{38} + 24 q^{44} - 4 q^{46} - 16 q^{49} + 8 q^{53} - 24 q^{55} + 16 q^{58} - 16 q^{64} + 32 q^{73}+ \cdots + 4 q^{92}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x16+32x14+392x12+2324x10+6930x8+9856x6+5740x4+1108x2+1 x^{16} + 32x^{14} + 392x^{12} + 2324x^{10} + 6930x^{8} + 9856x^{6} + 5740x^{4} + 1108x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== (ν14+31ν12+353ν10+1747ν8+3031ν61479ν44661ν271)/1568 ( \nu^{14} + 31\nu^{12} + 353\nu^{10} + 1747\nu^{8} + 3031\nu^{6} - 1479\nu^{4} - 4661\nu^{2} - 71 ) / 1568 Copy content Toggle raw display
β2\beta_{2}== (13ν14411ν124925ν1027999ν876603ν688749ν424879ν2+2195)/1568 ( -13\nu^{14} - 411\nu^{12} - 4925\nu^{10} - 27999\nu^{8} - 76603\nu^{6} - 88749\nu^{4} - 24879\nu^{2} + 2195 ) / 1568 Copy content Toggle raw display
β3\beta_{3}== (5ν14+153ν12+1751ν10+9303ν8+22823ν6+21583ν4+3137ν2275)/392 ( 5\nu^{14} + 153\nu^{12} + 1751\nu^{10} + 9303\nu^{8} + 22823\nu^{6} + 21583\nu^{4} + 3137\nu^{2} - 275 ) / 392 Copy content Toggle raw display
β4\beta_{4}== (3ν1591ν131017ν115039ν99481ν7+2899ν5+22933ν3+9247ν)/392 ( -3\nu^{15} - 91\nu^{13} - 1017\nu^{11} - 5039\nu^{9} - 9481\nu^{7} + 2899\nu^{5} + 22933\nu^{3} + 9247\nu ) / 392 Copy content Toggle raw display
β5\beta_{5}== (13ν15+411ν13+4925ν11+27999ν9+76603ν7+88749ν5+2195ν)/1568 ( 13 \nu^{15} + 411 \nu^{13} + 4925 \nu^{11} + 27999 \nu^{9} + 76603 \nu^{7} + 88749 \nu^{5} + \cdots - 2195 \nu ) / 1568 Copy content Toggle raw display
β6\beta_{6}== (19ν14+593ν12+7015ν10+39505ν8+108221ν6+129879ν4+45877ν2557)/784 ( 19\nu^{14} + 593\nu^{12} + 7015\nu^{10} + 39505\nu^{8} + 108221\nu^{6} + 129879\nu^{4} + 45877\nu^{2} - 557 ) / 784 Copy content Toggle raw display
β7\beta_{7}== (55ν14+1729ν12+20591ν10+116373ν8+317281ν6+371943ν4+1057)/1568 ( 55 \nu^{14} + 1729 \nu^{12} + 20591 \nu^{10} + 116373 \nu^{8} + 317281 \nu^{6} + 371943 \nu^{4} + \cdots - 1057 ) / 1568 Copy content Toggle raw display
β8\beta_{8}== (8ν15+255ν13+3104ν11+18204ν9+53214ν7+72735ν5+38816ν3+6544ν)/196 ( 8\nu^{15} + 255\nu^{13} + 3104\nu^{11} + 18204\nu^{9} + 53214\nu^{7} + 72735\nu^{5} + 38816\nu^{3} + 6544\nu ) / 196 Copy content Toggle raw display
β9\beta_{9}== (69ν15+2195ν13+26653ν11+155823ν9+453411ν7+613797ν5++39117ν)/1568 ( 69 \nu^{15} + 2195 \nu^{13} + 26653 \nu^{11} + 155823 \nu^{9} + 453411 \nu^{7} + 613797 \nu^{5} + \cdots + 39117 \nu ) / 1568 Copy content Toggle raw display
β10\beta_{10}== (71ν152273ν1327863ν11165357ν9493777ν7702807ν5+74007ν)/1568 ( - 71 \nu^{15} - 2273 \nu^{13} - 27863 \nu^{11} - 165357 \nu^{9} - 493777 \nu^{7} - 702807 \nu^{5} + \cdots - 74007 \nu ) / 1568 Copy content Toggle raw display
β11\beta_{11}== (41ν15+1303ν13+15789ν11+91911ν9+265007ν7+351273ν5++20029ν)/784 ( 41 \nu^{15} + 1303 \nu^{13} + 15789 \nu^{11} + 91911 \nu^{9} + 265007 \nu^{7} + 351273 \nu^{5} + \cdots + 20029 \nu ) / 784 Copy content Toggle raw display
β12\beta_{12}== (85ν15+12ν142747ν13+388ν1234149ν11+4796ν10++7804)/1568 ( - 85 \nu^{15} + 12 \nu^{14} - 2747 \nu^{13} + 388 \nu^{12} - 34149 \nu^{11} + 4796 \nu^{10} + \cdots + 7804 ) / 1568 Copy content Toggle raw display
β13\beta_{13}== (85ν15+25ν14+2747ν13+799ν12+34149ν11+9721ν10++5609)/1568 ( 85 \nu^{15} + 25 \nu^{14} + 2747 \nu^{13} + 799 \nu^{12} + 34149 \nu^{11} + 9721 \nu^{10} + \cdots + 5609 ) / 1568 Copy content Toggle raw display
β14\beta_{14}== (169ν15+18ν145399ν13+574ν1265985ν11+6970ν10+3766)/1568 ( - 169 \nu^{15} + 18 \nu^{14} - 5399 \nu^{13} + 574 \nu^{12} - 65985 \nu^{11} + 6970 \nu^{10} + \cdots - 3766 ) / 1568 Copy content Toggle raw display
β15\beta_{15}== (169ν1518ν145399ν13574ν1265985ν116970ν10++3766)/1568 ( - 169 \nu^{15} - 18 \nu^{14} - 5399 \nu^{13} - 574 \nu^{12} - 65985 \nu^{11} - 6970 \nu^{10} + \cdots + 3766 ) / 1568 Copy content Toggle raw display
ν\nu== (β11β9β5)/2 ( \beta_{11} - \beta_{9} - \beta_{5} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β13+β122β7+β6+β3β2+2β17)/2 ( \beta_{13} + \beta_{12} - 2\beta_{7} + \beta_{6} + \beta_{3} - \beta_{2} + 2\beta _1 - 7 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (β15β148β11+7β95β8+11β5β4)/2 ( -\beta_{15} - \beta_{14} - 8\beta_{11} + 7\beta_{9} - 5\beta_{8} + 11\beta_{5} - \beta_{4} ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (β15+β149β139β12+22β712β68β3++52)/2 ( - \beta_{15} + \beta_{14} - 9 \beta_{13} - 9 \beta_{12} + 22 \beta_{7} - 12 \beta_{6} - 8 \beta_{3} + \cdots + 52 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (14β15+14β142β13+2β12+69β1114β10+2β2)/2 ( 14 \beta_{15} + 14 \beta_{14} - 2 \beta_{13} + 2 \beta_{12} + 69 \beta_{11} - 14 \beta_{10} + \cdots - 2 \beta_{2} ) / 2 Copy content Toggle raw display
ν6\nu^{6}== (19β1519β14+86β13+86β12228β7+133β6+461)/2 ( 19 \beta_{15} - 19 \beta_{14} + 86 \beta_{13} + 86 \beta_{12} - 228 \beta_{7} + 133 \beta_{6} + \cdots - 461 ) / 2 Copy content Toggle raw display
ν7\nu^{7}== (173β15173β14+42β1342β12642β11++42β2)/2 ( - 173 \beta_{15} - 173 \beta_{14} + 42 \beta_{13} - 42 \beta_{12} - 642 \beta_{11} + \cdots + 42 \beta_{2} ) / 2 Copy content Toggle raw display
ν8\nu^{8}== 126β15+126β14429β13429β12+1192β7729β6++2212 - 126 \beta_{15} + 126 \beta_{14} - 429 \beta_{13} - 429 \beta_{12} + 1192 \beta_{7} - 729 \beta_{6} + \cdots + 2212 Copy content Toggle raw display
ν9\nu^{9}== (2038β15+2038β14628β13+628β12+6291β11+628β2)/2 ( 2038 \beta_{15} + 2038 \beta_{14} - 628 \beta_{13} + 628 \beta_{12} + 6291 \beta_{11} + \cdots - 628 \beta_{2} ) / 2 Copy content Toggle raw display
ν10\nu^{10}== (2998β152998β14+8833β13+8833β1225326β7+16039β6+44493)/2 ( 2998 \beta_{15} - 2998 \beta_{14} + 8833 \beta_{13} + 8833 \beta_{12} - 25326 \beta_{7} + 16039 \beta_{6} + \cdots - 44493 ) / 2 Copy content Toggle raw display
ν11\nu^{11}== (23423β1523423β14+8184β138184β1263958β11++8184β2)/2 ( - 23423 \beta_{15} - 23423 \beta_{14} + 8184 \beta_{13} - 8184 \beta_{12} - 63958 \beta_{11} + \cdots + 8184 \beta_{2} ) / 2 Copy content Toggle raw display
ν12\nu^{12}== (34197β15+34197β1492959β1392959β12+272502β7++461354)/2 ( - 34197 \beta_{15} + 34197 \beta_{14} - 92959 \beta_{13} - 92959 \beta_{12} + 272502 \beta_{7} + \cdots + 461354 ) / 2 Copy content Toggle raw display
ν13\nu^{13}== (265372β15+265372β1499474β13+99474β12+667523β11+99474β2)/2 ( 265372 \beta_{15} + 265372 \beta_{14} - 99474 \beta_{13} + 99474 \beta_{12} + 667523 \beta_{11} + \cdots - 99474 \beta_{2} ) / 2 Copy content Toggle raw display
ν14\nu^{14}== (382989β15382989β14+993290β13+993290β122958048β7+4882959)/2 ( 382989 \beta_{15} - 382989 \beta_{14} + 993290 \beta_{13} + 993290 \beta_{12} - 2958048 \beta_{7} + \cdots - 4882959 ) / 2 Copy content Toggle raw display
ν15\nu^{15}== (2979759β152979759β14+1163166β131163166β12++1163166β2)/2 ( - 2979759 \beta_{15} - 2979759 \beta_{14} + 1163166 \beta_{13} - 1163166 \beta_{12} + \cdots + 1163166 \beta_{2} ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2070Z)×\left(\mathbb{Z}/2070\mathbb{Z}\right)^\times.

nn 461461 16571657 18911891
χ(n)\chi(n) 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1241.1
3.32099i
1.90023i
1.48712i
0.0301128i
0.630652i
0.795887i
2.59147i
2.72045i
2.72045i
2.59147i
0.795887i
0.630652i
0.0301128i
1.48712i
1.90023i
3.32099i
1.00000i 0 −1.00000 1.00000 0 4.69659i 1.00000i 0 1.00000i
1241.2 1.00000i 0 −1.00000 1.00000 0 2.68734i 1.00000i 0 1.00000i
1241.3 1.00000i 0 −1.00000 1.00000 0 2.10311i 1.00000i 0 1.00000i
1241.4 1.00000i 0 −1.00000 1.00000 0 0.0425859i 1.00000i 0 1.00000i
1241.5 1.00000i 0 −1.00000 1.00000 0 0.891877i 1.00000i 0 1.00000i
1241.6 1.00000i 0 −1.00000 1.00000 0 1.12555i 1.00000i 0 1.00000i
1241.7 1.00000i 0 −1.00000 1.00000 0 3.66489i 1.00000i 0 1.00000i
1241.8 1.00000i 0 −1.00000 1.00000 0 3.84729i 1.00000i 0 1.00000i
1241.9 1.00000i 0 −1.00000 1.00000 0 3.84729i 1.00000i 0 1.00000i
1241.10 1.00000i 0 −1.00000 1.00000 0 3.66489i 1.00000i 0 1.00000i
1241.11 1.00000i 0 −1.00000 1.00000 0 1.12555i 1.00000i 0 1.00000i
1241.12 1.00000i 0 −1.00000 1.00000 0 0.891877i 1.00000i 0 1.00000i
1241.13 1.00000i 0 −1.00000 1.00000 0 0.0425859i 1.00000i 0 1.00000i
1241.14 1.00000i 0 −1.00000 1.00000 0 2.10311i 1.00000i 0 1.00000i
1241.15 1.00000i 0 −1.00000 1.00000 0 2.68734i 1.00000i 0 1.00000i
1241.16 1.00000i 0 −1.00000 1.00000 0 4.69659i 1.00000i 0 1.00000i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1241.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
69.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2070.2.e.b yes 16
3.b odd 2 1 2070.2.e.a 16
23.b odd 2 1 2070.2.e.a 16
69.c even 2 1 inner 2070.2.e.b yes 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2070.2.e.a 16 3.b odd 2 1
2070.2.e.a 16 23.b odd 2 1
2070.2.e.b yes 16 1.a even 1 1 trivial
2070.2.e.b yes 16 69.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T118+12T117+22T116200T115732T114+192T113+2568T112+896T111792 T_{11}^{8} + 12T_{11}^{7} + 22T_{11}^{6} - 200T_{11}^{5} - 732T_{11}^{4} + 192T_{11}^{3} + 2568T_{11}^{2} + 896T_{11} - 1792 acting on S2new(2070,[χ])S_{2}^{\mathrm{new}}(2070, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+1)8 (T^{2} + 1)^{8} Copy content Toggle raw display
33 T16 T^{16} Copy content Toggle raw display
55 (T1)16 (T - 1)^{16} Copy content Toggle raw display
77 T16+64T14++256 T^{16} + 64 T^{14} + \cdots + 256 Copy content Toggle raw display
1111 (T8+12T7+1792)2 (T^{8} + 12 T^{7} + \cdots - 1792)^{2} Copy content Toggle raw display
1313 (T846T6+1568)2 (T^{8} - 46 T^{6} + \cdots - 1568)^{2} Copy content Toggle raw display
1717 (T840T6+128)2 (T^{8} - 40 T^{6} + \cdots - 128)^{2} Copy content Toggle raw display
1919 T16++4228120576 T^{16} + \cdots + 4228120576 Copy content Toggle raw display
2323 T16++78310985281 T^{16} + \cdots + 78310985281 Copy content Toggle raw display
2929 T16++45474709504 T^{16} + \cdots + 45474709504 Copy content Toggle raw display
3131 (T8+4T7++28672)2 (T^{8} + 4 T^{7} + \cdots + 28672)^{2} Copy content Toggle raw display
3737 T16++286015744 T^{16} + \cdots + 286015744 Copy content Toggle raw display
4141 T16++4787974164736 T^{16} + \cdots + 4787974164736 Copy content Toggle raw display
4343 T16++1584676864 T^{16} + \cdots + 1584676864 Copy content Toggle raw display
4747 T16++1670008274944 T^{16} + \cdots + 1670008274944 Copy content Toggle raw display
5353 (T84T7++1035776)2 (T^{8} - 4 T^{7} + \cdots + 1035776)^{2} Copy content Toggle raw display
5959 T16++716888201453824 T^{16} + \cdots + 716888201453824 Copy content Toggle raw display
6161 T16++8469889024 T^{16} + \cdots + 8469889024 Copy content Toggle raw display
6767 T16++203119673344 T^{16} + \cdots + 203119673344 Copy content Toggle raw display
7171 T16++20025696600064 T^{16} + \cdots + 20025696600064 Copy content Toggle raw display
7373 (T816T7++4600064)2 (T^{8} - 16 T^{7} + \cdots + 4600064)^{2} Copy content Toggle raw display
7979 T16++825757696 T^{16} + \cdots + 825757696 Copy content Toggle raw display
8383 (T8+28T7+17706752)2 (T^{8} + 28 T^{7} + \cdots - 17706752)^{2} Copy content Toggle raw display
8989 (T820T7+180512)2 (T^{8} - 20 T^{7} + \cdots - 180512)^{2} Copy content Toggle raw display
9797 T16++71572141441024 T^{16} + \cdots + 71572141441024 Copy content Toggle raw display
show more
show less