gp: [N,k,chi] = [2070,2,Mod(1241,2070)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2070, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2070.1241");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [16,0,0,-16,16]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 15 1,\beta_1,\ldots,\beta_{15} 1 , β 1 , … , β 1 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 16 + 32 x 14 + 392 x 12 + 2324 x 10 + 6930 x 8 + 9856 x 6 + 5740 x 4 + 1108 x 2 + 1 x^{16} + 32x^{14} + 392x^{12} + 2324x^{10} + 6930x^{8} + 9856x^{6} + 5740x^{4} + 1108x^{2} + 1 x 1 6 + 3 2 x 1 4 + 3 9 2 x 1 2 + 2 3 2 4 x 1 0 + 6 9 3 0 x 8 + 9 8 5 6 x 6 + 5 7 4 0 x 4 + 1 1 0 8 x 2 + 1
x^16 + 32*x^14 + 392*x^12 + 2324*x^10 + 6930*x^8 + 9856*x^6 + 5740*x^4 + 1108*x^2 + 1
:
β 1 \beta_{1} β 1 = = =
( ν 14 + 31 ν 12 + 353 ν 10 + 1747 ν 8 + 3031 ν 6 − 1479 ν 4 − 4661 ν 2 − 71 ) / 1568 ( \nu^{14} + 31\nu^{12} + 353\nu^{10} + 1747\nu^{8} + 3031\nu^{6} - 1479\nu^{4} - 4661\nu^{2} - 71 ) / 1568 ( ν 1 4 + 3 1 ν 1 2 + 3 5 3 ν 1 0 + 1 7 4 7 ν 8 + 3 0 3 1 ν 6 − 1 4 7 9 ν 4 − 4 6 6 1 ν 2 − 7 1 ) / 1 5 6 8
(v^14 + 31*v^12 + 353*v^10 + 1747*v^8 + 3031*v^6 - 1479*v^4 - 4661*v^2 - 71) / 1568
β 2 \beta_{2} β 2 = = =
( − 13 ν 14 − 411 ν 12 − 4925 ν 10 − 27999 ν 8 − 76603 ν 6 − 88749 ν 4 − 24879 ν 2 + 2195 ) / 1568 ( -13\nu^{14} - 411\nu^{12} - 4925\nu^{10} - 27999\nu^{8} - 76603\nu^{6} - 88749\nu^{4} - 24879\nu^{2} + 2195 ) / 1568 ( − 1 3 ν 1 4 − 4 1 1 ν 1 2 − 4 9 2 5 ν 1 0 − 2 7 9 9 9 ν 8 − 7 6 6 0 3 ν 6 − 8 8 7 4 9 ν 4 − 2 4 8 7 9 ν 2 + 2 1 9 5 ) / 1 5 6 8
(-13*v^14 - 411*v^12 - 4925*v^10 - 27999*v^8 - 76603*v^6 - 88749*v^4 - 24879*v^2 + 2195) / 1568
β 3 \beta_{3} β 3 = = =
( 5 ν 14 + 153 ν 12 + 1751 ν 10 + 9303 ν 8 + 22823 ν 6 + 21583 ν 4 + 3137 ν 2 − 275 ) / 392 ( 5\nu^{14} + 153\nu^{12} + 1751\nu^{10} + 9303\nu^{8} + 22823\nu^{6} + 21583\nu^{4} + 3137\nu^{2} - 275 ) / 392 ( 5 ν 1 4 + 1 5 3 ν 1 2 + 1 7 5 1 ν 1 0 + 9 3 0 3 ν 8 + 2 2 8 2 3 ν 6 + 2 1 5 8 3 ν 4 + 3 1 3 7 ν 2 − 2 7 5 ) / 3 9 2
(5*v^14 + 153*v^12 + 1751*v^10 + 9303*v^8 + 22823*v^6 + 21583*v^4 + 3137*v^2 - 275) / 392
β 4 \beta_{4} β 4 = = =
( − 3 ν 15 − 91 ν 13 − 1017 ν 11 − 5039 ν 9 − 9481 ν 7 + 2899 ν 5 + 22933 ν 3 + 9247 ν ) / 392 ( -3\nu^{15} - 91\nu^{13} - 1017\nu^{11} - 5039\nu^{9} - 9481\nu^{7} + 2899\nu^{5} + 22933\nu^{3} + 9247\nu ) / 392 ( − 3 ν 1 5 − 9 1 ν 1 3 − 1 0 1 7 ν 1 1 − 5 0 3 9 ν 9 − 9 4 8 1 ν 7 + 2 8 9 9 ν 5 + 2 2 9 3 3 ν 3 + 9 2 4 7 ν ) / 3 9 2
(-3*v^15 - 91*v^13 - 1017*v^11 - 5039*v^9 - 9481*v^7 + 2899*v^5 + 22933*v^3 + 9247*v) / 392
β 5 \beta_{5} β 5 = = =
( 13 ν 15 + 411 ν 13 + 4925 ν 11 + 27999 ν 9 + 76603 ν 7 + 88749 ν 5 + ⋯ − 2195 ν ) / 1568 ( 13 \nu^{15} + 411 \nu^{13} + 4925 \nu^{11} + 27999 \nu^{9} + 76603 \nu^{7} + 88749 \nu^{5} + \cdots - 2195 \nu ) / 1568 ( 1 3 ν 1 5 + 4 1 1 ν 1 3 + 4 9 2 5 ν 1 1 + 2 7 9 9 9 ν 9 + 7 6 6 0 3 ν 7 + 8 8 7 4 9 ν 5 + ⋯ − 2 1 9 5 ν ) / 1 5 6 8
(13*v^15 + 411*v^13 + 4925*v^11 + 27999*v^9 + 76603*v^7 + 88749*v^5 + 24879*v^3 - 2195*v) / 1568
β 6 \beta_{6} β 6 = = =
( 19 ν 14 + 593 ν 12 + 7015 ν 10 + 39505 ν 8 + 108221 ν 6 + 129879 ν 4 + 45877 ν 2 − 557 ) / 784 ( 19\nu^{14} + 593\nu^{12} + 7015\nu^{10} + 39505\nu^{8} + 108221\nu^{6} + 129879\nu^{4} + 45877\nu^{2} - 557 ) / 784 ( 1 9 ν 1 4 + 5 9 3 ν 1 2 + 7 0 1 5 ν 1 0 + 3 9 5 0 5 ν 8 + 1 0 8 2 2 1 ν 6 + 1 2 9 8 7 9 ν 4 + 4 5 8 7 7 ν 2 − 5 5 7 ) / 7 8 4
(19*v^14 + 593*v^12 + 7015*v^10 + 39505*v^8 + 108221*v^6 + 129879*v^4 + 45877*v^2 - 557) / 784
β 7 \beta_{7} β 7 = = =
( 55 ν 14 + 1729 ν 12 + 20591 ν 10 + 116373 ν 8 + 317281 ν 6 + 371943 ν 4 + ⋯ − 1057 ) / 1568 ( 55 \nu^{14} + 1729 \nu^{12} + 20591 \nu^{10} + 116373 \nu^{8} + 317281 \nu^{6} + 371943 \nu^{4} + \cdots - 1057 ) / 1568 ( 5 5 ν 1 4 + 1 7 2 9 ν 1 2 + 2 0 5 9 1 ν 1 0 + 1 1 6 3 7 3 ν 8 + 3 1 7 2 8 1 ν 6 + 3 7 1 9 4 3 ν 4 + ⋯ − 1 0 5 7 ) / 1 5 6 8
(55*v^14 + 1729*v^12 + 20591*v^10 + 116373*v^8 + 317281*v^6 + 371943*v^4 + 124213*v^2 - 1057) / 1568
β 8 \beta_{8} β 8 = = =
( 8 ν 15 + 255 ν 13 + 3104 ν 11 + 18204 ν 9 + 53214 ν 7 + 72735 ν 5 + 38816 ν 3 + 6544 ν ) / 196 ( 8\nu^{15} + 255\nu^{13} + 3104\nu^{11} + 18204\nu^{9} + 53214\nu^{7} + 72735\nu^{5} + 38816\nu^{3} + 6544\nu ) / 196 ( 8 ν 1 5 + 2 5 5 ν 1 3 + 3 1 0 4 ν 1 1 + 1 8 2 0 4 ν 9 + 5 3 2 1 4 ν 7 + 7 2 7 3 5 ν 5 + 3 8 8 1 6 ν 3 + 6 5 4 4 ν ) / 1 9 6
(8*v^15 + 255*v^13 + 3104*v^11 + 18204*v^9 + 53214*v^7 + 72735*v^5 + 38816*v^3 + 6544*v) / 196
β 9 \beta_{9} β 9 = = =
( 69 ν 15 + 2195 ν 13 + 26653 ν 11 + 155823 ν 9 + 453411 ν 7 + 613797 ν 5 + ⋯ + 39117 ν ) / 1568 ( 69 \nu^{15} + 2195 \nu^{13} + 26653 \nu^{11} + 155823 \nu^{9} + 453411 \nu^{7} + 613797 \nu^{5} + \cdots + 39117 \nu ) / 1568 ( 6 9 ν 1 5 + 2 1 9 5 ν 1 3 + 2 6 6 5 3 ν 1 1 + 1 5 5 8 2 3 ν 9 + 4 5 3 4 1 1 ν 7 + 6 1 3 7 9 7 ν 5 + ⋯ + 3 9 1 1 7 ν ) / 1 5 6 8
(69*v^15 + 2195*v^13 + 26653*v^11 + 155823*v^9 + 453411*v^7 + 613797*v^5 + 315279*v^3 + 39117*v) / 1568
β 10 \beta_{10} β 1 0 = = =
( − 71 ν 15 − 2273 ν 13 − 27863 ν 11 − 165357 ν 9 − 493777 ν 7 − 702807 ν 5 + ⋯ − 74007 ν ) / 1568 ( - 71 \nu^{15} - 2273 \nu^{13} - 27863 \nu^{11} - 165357 \nu^{9} - 493777 \nu^{7} - 702807 \nu^{5} + \cdots - 74007 \nu ) / 1568 ( − 7 1 ν 1 5 − 2 2 7 3 ν 1 3 − 2 7 8 6 3 ν 1 1 − 1 6 5 3 5 7 ν 9 − 4 9 3 7 7 7 ν 7 − 7 0 2 8 0 7 ν 5 + ⋯ − 7 4 0 0 7 ν ) / 1 5 6 8
(-71*v^15 - 2273*v^13 - 27863*v^11 - 165357*v^9 - 493777*v^7 - 702807*v^5 - 406061*v^3 - 74007*v) / 1568
β 11 \beta_{11} β 1 1 = = =
( 41 ν 15 + 1303 ν 13 + 15789 ν 11 + 91911 ν 9 + 265007 ν 7 + 351273 ν 5 + ⋯ + 20029 ν ) / 784 ( 41 \nu^{15} + 1303 \nu^{13} + 15789 \nu^{11} + 91911 \nu^{9} + 265007 \nu^{7} + 351273 \nu^{5} + \cdots + 20029 \nu ) / 784 ( 4 1 ν 1 5 + 1 3 0 3 ν 1 3 + 1 5 7 8 9 ν 1 1 + 9 1 9 1 1 ν 9 + 2 6 5 0 0 7 ν 7 + 3 5 1 2 7 3 ν 5 + ⋯ + 2 0 0 2 9 ν ) / 7 8 4
(41*v^15 + 1303*v^13 + 15789*v^11 + 91911*v^9 + 265007*v^7 + 351273*v^5 + 170079*v^3 + 20029*v) / 784
β 12 \beta_{12} β 1 2 = = =
( − 85 ν 15 + 12 ν 14 − 2747 ν 13 + 388 ν 12 − 34149 ν 11 + 4796 ν 10 + ⋯ + 7804 ) / 1568 ( - 85 \nu^{15} + 12 \nu^{14} - 2747 \nu^{13} + 388 \nu^{12} - 34149 \nu^{11} + 4796 \nu^{10} + \cdots + 7804 ) / 1568 ( − 8 5 ν 1 5 + 1 2 ν 1 4 − 2 7 4 7 ν 1 3 + 3 8 8 ν 1 2 − 3 4 1 4 9 ν 1 1 + 4 7 9 6 ν 1 0 + ⋯ + 7 8 0 4 ) / 1 5 6 8
(-85*v^15 + 12*v^14 - 2747*v^13 + 388*v^12 - 34149*v^11 + 4796*v^10 - 207071*v^9 + 28516*v^8 - 640115*v^7 + 83780*v^6 - 966061*v^5 + 111628*v^4 - 620999*v^3 + 53412*v^2 - 128813*v + 7804) / 1568
β 13 \beta_{13} β 1 3 = = =
( 85 ν 15 + 25 ν 14 + 2747 ν 13 + 799 ν 12 + 34149 ν 11 + 9721 ν 10 + ⋯ + 5609 ) / 1568 ( 85 \nu^{15} + 25 \nu^{14} + 2747 \nu^{13} + 799 \nu^{12} + 34149 \nu^{11} + 9721 \nu^{10} + \cdots + 5609 ) / 1568 ( 8 5 ν 1 5 + 2 5 ν 1 4 + 2 7 4 7 ν 1 3 + 7 9 9 ν 1 2 + 3 4 1 4 9 ν 1 1 + 9 7 2 1 ν 1 0 + ⋯ + 5 6 0 9 ) / 1 5 6 8
(85*v^15 + 25*v^14 + 2747*v^13 + 799*v^12 + 34149*v^11 + 9721*v^10 + 207071*v^9 + 56515*v^8 + 640115*v^7 + 160383*v^6 + 966061*v^5 + 200377*v^4 + 620999*v^3 + 78291*v^2 + 128813*v + 5609) / 1568
β 14 \beta_{14} β 1 4 = = =
( − 169 ν 15 + 18 ν 14 − 5399 ν 13 + 574 ν 12 − 65985 ν 11 + 6970 ν 10 + ⋯ − 3766 ) / 1568 ( - 169 \nu^{15} + 18 \nu^{14} - 5399 \nu^{13} + 574 \nu^{12} - 65985 \nu^{11} + 6970 \nu^{10} + \cdots - 3766 ) / 1568 ( − 1 6 9 ν 1 5 + 1 8 ν 1 4 − 5 3 9 9 ν 1 3 + 5 7 4 ν 1 2 − 6 5 9 8 5 ν 1 1 + 6 9 7 0 ν 1 0 + ⋯ − 3 7 6 6 ) / 1 5 6 8
(-169*v^15 + 18*v^14 - 5399*v^13 + 574*v^12 - 65985*v^11 + 6970*v^10 - 389915*v^9 + 40398*v^8 - 1157119*v^7 + 113166*v^6 - 1634273*v^5 + 132210*v^4 - 944075*v^3 + 32334*v^2 - 184769*v - 3766) / 1568
β 15 \beta_{15} β 1 5 = = =
( − 169 ν 15 − 18 ν 14 − 5399 ν 13 − 574 ν 12 − 65985 ν 11 − 6970 ν 10 + ⋯ + 3766 ) / 1568 ( - 169 \nu^{15} - 18 \nu^{14} - 5399 \nu^{13} - 574 \nu^{12} - 65985 \nu^{11} - 6970 \nu^{10} + \cdots + 3766 ) / 1568 ( − 1 6 9 ν 1 5 − 1 8 ν 1 4 − 5 3 9 9 ν 1 3 − 5 7 4 ν 1 2 − 6 5 9 8 5 ν 1 1 − 6 9 7 0 ν 1 0 + ⋯ + 3 7 6 6 ) / 1 5 6 8
(-169*v^15 - 18*v^14 - 5399*v^13 - 574*v^12 - 65985*v^11 - 6970*v^10 - 389915*v^9 - 40398*v^8 - 1157119*v^7 - 113166*v^6 - 1634273*v^5 - 132210*v^4 - 944075*v^3 - 32334*v^2 - 184769*v + 3766) / 1568
ν \nu ν = = =
( β 11 − β 9 − β 5 ) / 2 ( \beta_{11} - \beta_{9} - \beta_{5} ) / 2 ( β 1 1 − β 9 − β 5 ) / 2
(b11 - b9 - b5) / 2
ν 2 \nu^{2} ν 2 = = =
( β 13 + β 12 − 2 β 7 + β 6 + β 3 − β 2 + 2 β 1 − 7 ) / 2 ( \beta_{13} + \beta_{12} - 2\beta_{7} + \beta_{6} + \beta_{3} - \beta_{2} + 2\beta _1 - 7 ) / 2 ( β 1 3 + β 1 2 − 2 β 7 + β 6 + β 3 − β 2 + 2 β 1 − 7 ) / 2
(b13 + b12 - 2*b7 + b6 + b3 - b2 + 2*b1 - 7) / 2
ν 3 \nu^{3} ν 3 = = =
( − β 15 − β 14 − 8 β 11 + 7 β 9 − 5 β 8 + 11 β 5 − β 4 ) / 2 ( -\beta_{15} - \beta_{14} - 8\beta_{11} + 7\beta_{9} - 5\beta_{8} + 11\beta_{5} - \beta_{4} ) / 2 ( − β 1 5 − β 1 4 − 8 β 1 1 + 7 β 9 − 5 β 8 + 1 1 β 5 − β 4 ) / 2
(-b15 - b14 - 8*b11 + 7*b9 - 5*b8 + 11*b5 - b4) / 2
ν 4 \nu^{4} ν 4 = = =
( − β 15 + β 14 − 9 β 13 − 9 β 12 + 22 β 7 − 12 β 6 − 8 β 3 + ⋯ + 52 ) / 2 ( - \beta_{15} + \beta_{14} - 9 \beta_{13} - 9 \beta_{12} + 22 \beta_{7} - 12 \beta_{6} - 8 \beta_{3} + \cdots + 52 ) / 2 ( − β 1 5 + β 1 4 − 9 β 1 3 − 9 β 1 2 + 2 2 β 7 − 1 2 β 6 − 8 β 3 + ⋯ + 5 2 ) / 2
(-b15 + b14 - 9*b13 - 9*b12 + 22*b7 - 12*b6 - 8*b3 + 21*b2 - 24*b1 + 52) / 2
ν 5 \nu^{5} ν 5 = = =
( 14 β 15 + 14 β 14 − 2 β 13 + 2 β 12 + 69 β 11 − 14 β 10 + ⋯ − 2 β 2 ) / 2 ( 14 \beta_{15} + 14 \beta_{14} - 2 \beta_{13} + 2 \beta_{12} + 69 \beta_{11} - 14 \beta_{10} + \cdots - 2 \beta_{2} ) / 2 ( 1 4 β 1 5 + 1 4 β 1 4 − 2 β 1 3 + 2 β 1 2 + 6 9 β 1 1 − 1 4 β 1 0 + ⋯ − 2 β 2 ) / 2
(14*b15 + 14*b14 - 2*b13 + 2*b12 + 69*b11 - 14*b10 - 67*b9 + 74*b8 - 121*b5 + 10*b4 - 2*b2) / 2
ν 6 \nu^{6} ν 6 = = =
( 19 β 15 − 19 β 14 + 86 β 13 + 86 β 12 − 228 β 7 + 133 β 6 + ⋯ − 461 ) / 2 ( 19 \beta_{15} - 19 \beta_{14} + 86 \beta_{13} + 86 \beta_{12} - 228 \beta_{7} + 133 \beta_{6} + \cdots - 461 ) / 2 ( 1 9 β 1 5 − 1 9 β 1 4 + 8 6 β 1 3 + 8 6 β 1 2 − 2 2 8 β 7 + 1 3 3 β 6 + ⋯ − 4 6 1 ) / 2
(19*b15 - 19*b14 + 86*b13 + 86*b12 - 228*b7 + 133*b6 + 65*b3 - 262*b2 + 282*b1 - 461) / 2
ν 7 \nu^{7} ν 7 = = =
( − 173 β 15 − 173 β 14 + 42 β 13 − 42 β 12 − 642 β 11 + ⋯ + 42 β 2 ) / 2 ( - 173 \beta_{15} - 173 \beta_{14} + 42 \beta_{13} - 42 \beta_{12} - 642 \beta_{11} + \cdots + 42 \beta_{2} ) / 2 ( − 1 7 3 β 1 5 − 1 7 3 β 1 4 + 4 2 β 1 3 − 4 2 β 1 2 − 6 4 2 β 1 1 + ⋯ + 4 2 β 2 ) / 2
(-173*b15 - 173*b14 + 42*b13 - 42*b12 - 642*b11 + 310*b10 + 695*b9 - 895*b8 + 1325*b5 - 95*b4 + 42*b2) / 2
ν 8 \nu^{8} ν 8 = = =
− 126 β 15 + 126 β 14 − 429 β 13 − 429 β 12 + 1192 β 7 − 729 β 6 + ⋯ + 2212 - 126 \beta_{15} + 126 \beta_{14} - 429 \beta_{13} - 429 \beta_{12} + 1192 \beta_{7} - 729 \beta_{6} + \cdots + 2212 − 1 2 6 β 1 5 + 1 2 6 β 1 4 − 4 2 9 β 1 3 − 4 2 9 β 1 2 + 1 1 9 2 β 7 − 7 2 9 β 6 + ⋯ + 2 2 1 2
-126*b15 + 126*b14 - 429*b13 - 429*b12 + 1192*b7 - 729*b6 - 279*b3 + 1485*b2 - 1636*b1 + 2212
ν 9 \nu^{9} ν 9 = = =
( 2038 β 15 + 2038 β 14 − 628 β 13 + 628 β 12 + 6291 β 11 + ⋯ − 628 β 2 ) / 2 ( 2038 \beta_{15} + 2038 \beta_{14} - 628 \beta_{13} + 628 \beta_{12} + 6291 \beta_{11} + \cdots - 628 \beta_{2} ) / 2 ( 2 0 3 8 β 1 5 + 2 0 3 8 β 1 4 − 6 2 8 β 1 3 + 6 2 8 β 1 2 + 6 2 9 1 β 1 1 + ⋯ − 6 2 8 β 2 ) / 2
(2038*b15 + 2038*b14 - 628*b13 + 628*b12 + 6291*b11 - 4696*b10 - 7425*b9 + 10290*b8 - 14497*b5 + 954*b4 - 628*b2) / 2
ν 10 \nu^{10} ν 1 0 = = =
( 2998 β 15 − 2998 β 14 + 8833 β 13 + 8833 β 12 − 25326 β 7 + 16039 β 6 + ⋯ − 44493 ) / 2 ( 2998 \beta_{15} - 2998 \beta_{14} + 8833 \beta_{13} + 8833 \beta_{12} - 25326 \beta_{7} + 16039 \beta_{6} + \cdots - 44493 ) / 2 ( 2 9 9 8 β 1 5 − 2 9 9 8 β 1 4 + 8 8 3 3 β 1 3 + 8 8 3 3 β 1 2 − 2 5 3 2 6 β 7 + 1 6 0 3 9 β 6 + ⋯ − 4 4 4 9 3 ) / 2
(2998*b15 - 2998*b14 + 8833*b13 + 8833*b12 - 25326*b7 + 16039*b6 + 5035*b3 - 32801*b2 + 37442*b1 - 44493) / 2
ν 11 \nu^{11} ν 1 1 = = =
( − 23423 β 15 − 23423 β 14 + 8184 β 13 − 8184 β 12 − 63958 β 11 + ⋯ + 8184 β 2 ) / 2 ( - 23423 \beta_{15} - 23423 \beta_{14} + 8184 \beta_{13} - 8184 \beta_{12} - 63958 \beta_{11} + \cdots + 8184 \beta_{2} ) / 2 ( − 2 3 4 2 3 β 1 5 − 2 3 4 2 3 β 1 4 + 8 1 8 4 β 1 3 − 8 1 8 4 β 1 2 − 6 3 9 5 8 β 1 1 + ⋯ + 8 1 8 4 β 2 ) / 2
(-23423*b15 - 23423*b14 + 8184*b13 - 8184*b12 - 63958*b11 + 61364*b10 + 80443*b9 - 116279*b8 + 158763*b5 - 10043*b4 + 8184*b2) / 2
ν 12 \nu^{12} ν 1 2 = = =
( − 34197 β 15 + 34197 β 14 − 92959 β 13 − 92959 β 12 + 272502 β 7 + ⋯ + 461354 ) / 2 ( - 34197 \beta_{15} + 34197 \beta_{14} - 92959 \beta_{13} - 92959 \beta_{12} + 272502 \beta_{7} + \cdots + 461354 ) / 2 ( − 3 4 1 9 7 β 1 5 + 3 4 1 9 7 β 1 4 − 9 2 9 5 9 β 1 3 − 9 2 9 5 9 β 1 2 + 2 7 2 5 0 2 β 7 + ⋯ + 4 6 1 3 5 4 ) / 2
(-34197*b15 + 34197*b14 - 92959*b13 - 92959*b12 + 272502*b7 - 177070*b6 - 47590*b3 + 359627*b2 - 423608*b1 + 461354) / 2
ν 13 \nu^{13} ν 1 3 = = =
( 265372 β 15 + 265372 β 14 − 99474 β 13 + 99474 β 12 + 667523 β 11 + ⋯ − 99474 β 2 ) / 2 ( 265372 \beta_{15} + 265372 \beta_{14} - 99474 \beta_{13} + 99474 \beta_{12} + 667523 \beta_{11} + \cdots - 99474 \beta_{2} ) / 2 ( 2 6 5 3 7 2 β 1 5 + 2 6 5 3 7 2 β 1 4 − 9 9 4 7 4 β 1 3 + 9 9 4 7 4 β 1 2 + 6 6 7 5 2 3 β 1 1 + ⋯ − 9 9 4 7 4 β 2 ) / 2
(265372*b15 + 265372*b14 - 99474*b13 + 99474*b12 + 667523*b11 - 746158*b10 - 878175*b9 + 1303516*b8 - 1741125*b5 + 108676*b4 - 99474*b2) / 2
ν 14 \nu^{14} ν 1 4 = = =
( 382989 β 15 − 382989 β 14 + 993290 β 13 + 993290 β 12 − 2958048 β 7 + ⋯ − 4882959 ) / 2 ( 382989 \beta_{15} - 382989 \beta_{14} + 993290 \beta_{13} + 993290 \beta_{12} - 2958048 \beta_{7} + \cdots - 4882959 ) / 2 ( 3 8 2 9 8 9 β 1 5 − 3 8 2 9 8 9 β 1 4 + 9 9 3 2 9 0 β 1 3 + 9 9 3 2 9 0 β 1 2 − 2 9 5 8 0 4 8 β 7 + ⋯ − 4 8 8 2 9 5 9 ) / 2
(382989*b15 - 382989*b14 + 993290*b13 + 993290*b12 - 2958048*b7 + 1958319*b6 + 468575*b3 - 3937754*b2 + 4753226*b1 - 4882959) / 2
ν 15 \nu^{15} ν 1 5 = = =
( − 2979759 β 15 − 2979759 β 14 + 1163166 β 13 − 1163166 β 12 + ⋯ + 1163166 β 2 ) / 2 ( - 2979759 \beta_{15} - 2979759 \beta_{14} + 1163166 \beta_{13} - 1163166 \beta_{12} + \cdots + 1163166 \beta_{2} ) / 2 ( − 2 9 7 9 7 5 9 β 1 5 − 2 9 7 9 7 5 9 β 1 4 + 1 1 6 3 1 6 6 β 1 3 − 1 1 6 3 1 6 6 β 1 2 + ⋯ + 1 1 6 3 1 6 6 β 2 ) / 2
(-2979759*b15 - 2979759*b14 + 1163166*b13 - 1163166*b12 - 7095680*b11 + 8725546*b10 + 9628575*b9 - 14543389*b8 + 19120233*b5 - 1192341*b4 + 1163166*b2) / 2
Character values
We give the values of χ \chi χ on generators for ( Z / 2070 Z ) × \left(\mathbb{Z}/2070\mathbb{Z}\right)^\times ( Z / 2 0 7 0 Z ) × .
n n n
461 461 4 6 1
1657 1657 1 6 5 7
1891 1891 1 8 9 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 11 8 + 12 T 11 7 + 22 T 11 6 − 200 T 11 5 − 732 T 11 4 + 192 T 11 3 + 2568 T 11 2 + 896 T 11 − 1792 T_{11}^{8} + 12T_{11}^{7} + 22T_{11}^{6} - 200T_{11}^{5} - 732T_{11}^{4} + 192T_{11}^{3} + 2568T_{11}^{2} + 896T_{11} - 1792 T 1 1 8 + 1 2 T 1 1 7 + 2 2 T 1 1 6 − 2 0 0 T 1 1 5 − 7 3 2 T 1 1 4 + 1 9 2 T 1 1 3 + 2 5 6 8 T 1 1 2 + 8 9 6 T 1 1 − 1 7 9 2
T11^8 + 12*T11^7 + 22*T11^6 - 200*T11^5 - 732*T11^4 + 192*T11^3 + 2568*T11^2 + 896*T11 - 1792
acting on S 2 n e w ( 2070 , [ χ ] ) S_{2}^{\mathrm{new}}(2070, [\chi]) S 2 n e w ( 2 0 7 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 + 1 ) 8 (T^{2} + 1)^{8} ( T 2 + 1 ) 8
(T^2 + 1)^8
3 3 3
T 16 T^{16} T 1 6
T^16
5 5 5
( T − 1 ) 16 (T - 1)^{16} ( T − 1 ) 1 6
(T - 1)^16
7 7 7
T 16 + 64 T 14 + ⋯ + 256 T^{16} + 64 T^{14} + \cdots + 256 T 1 6 + 6 4 T 1 4 + ⋯ + 2 5 6
T^16 + 64*T^14 + 1568*T^12 + 18592*T^10 + 110880*T^8 + 315392*T^6 + 367360*T^4 + 141824*T^2 + 256
11 11 1 1
( T 8 + 12 T 7 + ⋯ − 1792 ) 2 (T^{8} + 12 T^{7} + \cdots - 1792)^{2} ( T 8 + 1 2 T 7 + ⋯ − 1 7 9 2 ) 2
(T^8 + 12*T^7 + 22*T^6 - 200*T^5 - 732*T^4 + 192*T^3 + 2568*T^2 + 896*T - 1792)^2
13 13 1 3
( T 8 − 46 T 6 + ⋯ − 1568 ) 2 (T^{8} - 46 T^{6} + \cdots - 1568)^{2} ( T 8 − 4 6 T 6 + ⋯ − 1 5 6 8 ) 2
(T^8 - 46*T^6 + 24*T^5 + 596*T^4 - 736*T^3 - 1960*T^2 + 3808*T - 1568)^2
17 17 1 7
( T 8 − 40 T 6 + ⋯ − 128 ) 2 (T^{8} - 40 T^{6} + \cdots - 128)^{2} ( T 8 − 4 0 T 6 + ⋯ − 1 2 8 ) 2
(T^8 - 40*T^6 - 24*T^5 + 264*T^4 - 32*T^3 - 560*T^2 + 512*T - 128)^2
19 19 1 9
T 16 + ⋯ + 4228120576 T^{16} + \cdots + 4228120576 T 1 6 + ⋯ + 4 2 2 8 1 2 0 5 7 6
T^16 + 200*T^14 + 16208*T^12 + 683520*T^10 + 16038912*T^8 + 207900672*T^6 + 1394917376*T^4 + 4196532224*T^2 + 4228120576
23 23 2 3
T 16 + ⋯ + 78310985281 T^{16} + \cdots + 78310985281 T 1 6 + ⋯ + 7 8 3 1 0 9 8 5 2 8 1
T^16 + 4*T^15 + 4*T^14 - 188*T^13 - 204*T^12 + 3924*T^11 + 23740*T^10 - 64812*T^9 - 800042*T^8 - 1490676*T^7 + 12558460*T^6 + 47743308*T^5 - 57087564*T^4 - 1210032484*T^3 + 592143556*T^2 + 13619301788*T + 78310985281
29 29 2 9
T 16 + ⋯ + 45474709504 T^{16} + \cdots + 45474709504 T 1 6 + ⋯ + 4 5 4 7 4 7 0 9 5 0 4
T^16 + 356*T^14 + 50884*T^12 + 3712640*T^10 + 144723200*T^8 + 2852244480*T^6 + 23879159808*T^4 + 70819610624*T^2 + 45474709504
31 31 3 1
( T 8 + 4 T 7 + ⋯ + 28672 ) 2 (T^{8} + 4 T^{7} + \cdots + 28672)^{2} ( T 8 + 4 T 7 + ⋯ + 2 8 6 7 2 ) 2
(T^8 + 4*T^7 - 164*T^6 - 320*T^5 + 7808*T^4 - 256*T^3 - 69632*T^2 - 57344*T + 28672)^2
37 37 3 7
T 16 + ⋯ + 286015744 T^{16} + \cdots + 286015744 T 1 6 + ⋯ + 2 8 6 0 1 5 7 4 4
T^16 + 256*T^14 + 22048*T^12 + 793824*T^10 + 13800224*T^8 + 119360512*T^6 + 482452224*T^4 + 748228096*T^2 + 286015744
41 41 4 1
T 16 + ⋯ + 4787974164736 T^{16} + \cdots + 4787974164736 T 1 6 + ⋯ + 4 7 8 7 9 7 4 1 6 4 7 3 6
T^16 + 432*T^14 + 75568*T^12 + 6943296*T^10 + 362380128*T^8 + 10832893184*T^6 + 178338974464*T^4 + 1478575479808*T^2 + 4787974164736
43 43 4 3
T 16 + ⋯ + 1584676864 T^{16} + \cdots + 1584676864 T 1 6 + ⋯ + 1 5 8 4 6 7 6 8 6 4
T^16 + 332*T^14 + 38100*T^12 + 1832544*T^10 + 40720576*T^8 + 423090176*T^6 + 1870695424*T^4 + 3049742336*T^2 + 1584676864
47 47 4 7
T 16 + ⋯ + 1670008274944 T^{16} + \cdots + 1670008274944 T 1 6 + ⋯ + 1 6 7 0 0 0 8 2 7 4 9 4 4
T^16 + 528*T^14 + 109888*T^12 + 11616768*T^10 + 662347776*T^8 + 19733118976*T^6 + 272511336448*T^4 + 1480938487808*T^2 + 1670008274944
53 53 5 3
( T 8 − 4 T 7 + ⋯ + 1035776 ) 2 (T^{8} - 4 T^{7} + \cdots + 1035776)^{2} ( T 8 − 4 T 7 + ⋯ + 1 0 3 5 7 7 6 ) 2
(T^8 - 4*T^7 - 212*T^6 + 928*T^5 + 12608*T^4 - 56192*T^3 - 172032*T^2 + 506880*T + 1035776)^2
59 59 5 9
T 16 + ⋯ + 716888201453824 T^{16} + \cdots + 716888201453824 T 1 6 + ⋯ + 7 1 6 8 8 8 2 0 1 4 5 3 8 2 4
T^16 + 720*T^14 + 211184*T^12 + 33164224*T^10 + 3068022368*T^8 + 171717284608*T^6 + 5672447082240*T^4 + 100420940923904*T^2 + 716888201453824
61 61 6 1
T 16 + ⋯ + 8469889024 T^{16} + \cdots + 8469889024 T 1 6 + ⋯ + 8 4 6 9 8 8 9 0 2 4
T^16 + 432*T^14 + 70544*T^12 + 5396832*T^10 + 195888704*T^8 + 3199461632*T^6 + 22865342720*T^4 + 57760927744*T^2 + 8469889024
67 67 6 7
T 16 + ⋯ + 203119673344 T^{16} + \cdots + 203119673344 T 1 6 + ⋯ + 2 0 3 1 1 9 6 7 3 3 4 4
T^16 + 652*T^14 + 154836*T^12 + 16722272*T^10 + 867497664*T^8 + 20199697408*T^6 + 161010695168*T^4 + 393872482304*T^2 + 203119673344
71 71 7 1
T 16 + ⋯ + 20025696600064 T^{16} + \cdots + 20025696600064 T 1 6 + ⋯ + 2 0 0 2 5 6 9 6 6 0 0 0 6 4
T^16 + 548*T^14 + 119316*T^12 + 13279520*T^10 + 811846592*T^8 + 27630433280*T^6 + 520563108864*T^4 + 5078458392576*T^2 + 20025696600064
73 73 7 3
( T 8 − 16 T 7 + ⋯ + 4600064 ) 2 (T^{8} - 16 T^{7} + \cdots + 4600064)^{2} ( T 8 − 1 6 T 7 + ⋯ + 4 6 0 0 0 6 4 ) 2
(T^8 - 16*T^7 - 216*T^6 + 3424*T^5 + 15872*T^4 - 209152*T^3 - 456448*T^2 + 3171328*T + 4600064)^2
79 79 7 9
T 16 + ⋯ + 825757696 T^{16} + \cdots + 825757696 T 1 6 + ⋯ + 8 2 5 7 5 7 6 9 6
T^16 + 640*T^14 + 148816*T^12 + 15278688*T^10 + 630856896*T^8 + 5165745408*T^6 + 8932091136*T^4 + 4854224896*T^2 + 825757696
83 83 8 3
( T 8 + 28 T 7 + ⋯ − 17706752 ) 2 (T^{8} + 28 T^{7} + \cdots - 17706752)^{2} ( T 8 + 2 8 T 7 + ⋯ − 1 7 7 0 6 7 5 2 ) 2
(T^8 + 28*T^7 + 52*T^6 - 4312*T^5 - 28936*T^4 + 161600*T^3 + 1638640*T^2 - 138880*T - 17706752)^2
89 89 8 9
( T 8 − 20 T 7 + ⋯ − 180512 ) 2 (T^{8} - 20 T^{7} + \cdots - 180512)^{2} ( T 8 − 2 0 T 7 + ⋯ − 1 8 0 5 1 2 ) 2
(T^8 - 20*T^7 - 18*T^6 + 2464*T^5 - 12948*T^4 - 16736*T^3 + 194120*T^2 - 187104*T - 180512)^2
97 97 9 7
T 16 + ⋯ + 71572141441024 T^{16} + \cdots + 71572141441024 T 1 6 + ⋯ + 7 1 5 7 2 1 4 1 4 4 1 0 2 4
T^16 + 684*T^14 + 189060*T^12 + 27236992*T^10 + 2195713536*T^8 + 98866465792*T^6 + 2344165294080*T^4 + 24874970251264*T^2 + 71572141441024
show more
show less