Properties

Label 2-2070-69.68-c1-0-23
Degree $2$
Conductor $2070$
Sign $-0.353 + 0.935i$
Analytic cond. $16.5290$
Root an. cond. $4.06559$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s + 5-s + 0.891i·7-s + i·8-s i·10-s + 0.713·11-s − 4.24·13-s + 0.891·14-s + 16-s + 0.522·17-s − 2.05i·19-s − 20-s − 0.713i·22-s + (−1.20 − 4.64i)23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s + 0.447·5-s + 0.337i·7-s + 0.353i·8-s − 0.316i·10-s + 0.214·11-s − 1.17·13-s + 0.238·14-s + 0.250·16-s + 0.126·17-s − 0.472i·19-s − 0.223·20-s − 0.152i·22-s + (−0.251 − 0.967i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2070 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.353 + 0.935i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2070 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.353 + 0.935i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2070\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 23\)
Sign: $-0.353 + 0.935i$
Analytic conductor: \(16.5290\)
Root analytic conductor: \(4.06559\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2070} (1241, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2070,\ (\ :1/2),\ -0.353 + 0.935i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.461842064\)
\(L(\frac12)\) \(\approx\) \(1.461842064\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
5 \( 1 - T \)
23 \( 1 + (1.20 + 4.64i)T \)
good7 \( 1 - 0.891iT - 7T^{2} \)
11 \( 1 - 0.713T + 11T^{2} \)
13 \( 1 + 4.24T + 13T^{2} \)
17 \( 1 - 0.522T + 17T^{2} \)
19 \( 1 + 2.05iT - 19T^{2} \)
29 \( 1 + 3.14iT - 29T^{2} \)
31 \( 1 - 5.09T + 31T^{2} \)
37 \( 1 + 10.9iT - 37T^{2} \)
41 \( 1 - 4.32iT - 41T^{2} \)
43 \( 1 + 10.8iT - 43T^{2} \)
47 \( 1 - 8.11iT - 47T^{2} \)
53 \( 1 - 10.1T + 53T^{2} \)
59 \( 1 + 8.77iT - 59T^{2} \)
61 \( 1 + 10.4iT - 61T^{2} \)
67 \( 1 - 0.835iT - 67T^{2} \)
71 \( 1 - 4.15iT - 71T^{2} \)
73 \( 1 - 4.80T + 73T^{2} \)
79 \( 1 + 1.14iT - 79T^{2} \)
83 \( 1 - 3.24T + 83T^{2} \)
89 \( 1 - 9.10T + 89T^{2} \)
97 \( 1 - 4.69iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.096905567708490342837467540276, −8.283085656218937715375615937217, −7.37146276540635901988395454822, −6.47132348952403288300501173348, −5.54585392898016310198533057193, −4.77926281016227415204067744657, −3.90585071546692231287113516211, −2.65027912824302139404340402146, −2.12471113582238875926675544135, −0.56442456790118267468628352210, 1.20932110791408262184393672017, 2.58099990397584892951241560374, 3.72689911318784957490701393560, 4.70835688659607482173428799921, 5.41512620926806882998835148166, 6.26545523863871338523628216823, 7.05403681595689018405494572643, 7.67619892098869959421407212714, 8.507530756510602475428626217107, 9.338498161231691444373806341089

Graph of the $Z$-function along the critical line