L(s) = 1 | − i·2-s − 4-s + 5-s + 0.891i·7-s + i·8-s − i·10-s + 0.713·11-s − 4.24·13-s + 0.891·14-s + 16-s + 0.522·17-s − 2.05i·19-s − 20-s − 0.713i·22-s + (−1.20 − 4.64i)23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + 0.447·5-s + 0.337i·7-s + 0.353i·8-s − 0.316i·10-s + 0.214·11-s − 1.17·13-s + 0.238·14-s + 0.250·16-s + 0.126·17-s − 0.472i·19-s − 0.223·20-s − 0.152i·22-s + (−0.251 − 0.967i)23-s + ⋯ |
Λ(s)=(=(2070s/2ΓC(s)L(s)(−0.353+0.935i)Λ(2−s)
Λ(s)=(=(2070s/2ΓC(s+1/2)L(s)(−0.353+0.935i)Λ(1−s)
Degree: |
2 |
Conductor: |
2070
= 2⋅32⋅5⋅23
|
Sign: |
−0.353+0.935i
|
Analytic conductor: |
16.5290 |
Root analytic conductor: |
4.06559 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2070(1241,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2070, ( :1/2), −0.353+0.935i)
|
Particular Values
L(1) |
≈ |
1.461842064 |
L(21) |
≈ |
1.461842064 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 3 | 1 |
| 5 | 1−T |
| 23 | 1+(1.20+4.64i)T |
good | 7 | 1−0.891iT−7T2 |
| 11 | 1−0.713T+11T2 |
| 13 | 1+4.24T+13T2 |
| 17 | 1−0.522T+17T2 |
| 19 | 1+2.05iT−19T2 |
| 29 | 1+3.14iT−29T2 |
| 31 | 1−5.09T+31T2 |
| 37 | 1+10.9iT−37T2 |
| 41 | 1−4.32iT−41T2 |
| 43 | 1+10.8iT−43T2 |
| 47 | 1−8.11iT−47T2 |
| 53 | 1−10.1T+53T2 |
| 59 | 1+8.77iT−59T2 |
| 61 | 1+10.4iT−61T2 |
| 67 | 1−0.835iT−67T2 |
| 71 | 1−4.15iT−71T2 |
| 73 | 1−4.80T+73T2 |
| 79 | 1+1.14iT−79T2 |
| 83 | 1−3.24T+83T2 |
| 89 | 1−9.10T+89T2 |
| 97 | 1−4.69iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.096905567708490342837467540276, −8.283085656218937715375615937217, −7.37146276540635901988395454822, −6.47132348952403288300501173348, −5.54585392898016310198533057193, −4.77926281016227415204067744657, −3.90585071546692231287113516211, −2.65027912824302139404340402146, −2.12471113582238875926675544135, −0.56442456790118267468628352210,
1.20932110791408262184393672017, 2.58099990397584892951241560374, 3.72689911318784957490701393560, 4.70835688659607482173428799921, 5.41512620926806882998835148166, 6.26545523863871338523628216823, 7.05403681595689018405494572643, 7.67619892098869959421407212714, 8.507530756510602475428626217107, 9.338498161231691444373806341089