Properties

Label 2070.2
Level 2070
Weight 2
Dimension 27482
Nonzero newspaces 24
Sturm bound 456192
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2070 = 2 \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(456192\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2070))\).

Total New Old
Modular forms 116864 27482 89382
Cusp forms 111233 27482 83751
Eisenstein series 5631 0 5631

Trace form

\( 27482 q - 6 q^{2} - 12 q^{3} - 6 q^{4} - 10 q^{5} + 12 q^{6} - 24 q^{7} + 6 q^{8} + 28 q^{9} + 22 q^{10} + 52 q^{11} + 16 q^{12} + 28 q^{13} + 40 q^{14} + 48 q^{15} - 6 q^{16} - 8 q^{17} + 8 q^{18} - 28 q^{19}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2070))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2070.2.a \(\chi_{2070}(1, \cdot)\) 2070.2.a.a 1 1
2070.2.a.b 1
2070.2.a.c 1
2070.2.a.d 1
2070.2.a.e 1
2070.2.a.f 1
2070.2.a.g 1
2070.2.a.h 1
2070.2.a.i 1
2070.2.a.j 1
2070.2.a.k 1
2070.2.a.l 1
2070.2.a.m 1
2070.2.a.n 1
2070.2.a.o 1
2070.2.a.p 1
2070.2.a.q 1
2070.2.a.r 1
2070.2.a.s 1
2070.2.a.t 2
2070.2.a.u 2
2070.2.a.v 2
2070.2.a.w 2
2070.2.a.x 2
2070.2.a.y 2
2070.2.a.z 3
2070.2.d \(\chi_{2070}(829, \cdot)\) 2070.2.d.a 4 1
2070.2.d.b 4
2070.2.d.c 4
2070.2.d.d 6
2070.2.d.e 6
2070.2.d.f 8
2070.2.d.g 8
2070.2.d.h 16
2070.2.e \(\chi_{2070}(1241, \cdot)\) 2070.2.e.a 16 1
2070.2.e.b 16
2070.2.h \(\chi_{2070}(2069, \cdot)\) 2070.2.h.a 24 1
2070.2.h.b 24
2070.2.i \(\chi_{2070}(691, \cdot)\) n/a 176 2
2070.2.j \(\chi_{2070}(323, \cdot)\) 2070.2.j.a 4 2
2070.2.j.b 4
2070.2.j.c 4
2070.2.j.d 4
2070.2.j.e 4
2070.2.j.f 4
2070.2.j.g 12
2070.2.j.h 16
2070.2.j.i 16
2070.2.j.j 20
2070.2.k \(\chi_{2070}(1333, \cdot)\) n/a 120 2
2070.2.n \(\chi_{2070}(689, \cdot)\) n/a 288 2
2070.2.q \(\chi_{2070}(551, \cdot)\) n/a 192 2
2070.2.r \(\chi_{2070}(139, \cdot)\) n/a 264 2
2070.2.u \(\chi_{2070}(271, \cdot)\) n/a 400 10
2070.2.x \(\chi_{2070}(47, \cdot)\) n/a 528 4
2070.2.y \(\chi_{2070}(367, \cdot)\) n/a 576 4
2070.2.z \(\chi_{2070}(89, \cdot)\) n/a 480 10
2070.2.bc \(\chi_{2070}(251, \cdot)\) n/a 320 10
2070.2.bd \(\chi_{2070}(289, \cdot)\) n/a 600 10
2070.2.bg \(\chi_{2070}(31, \cdot)\) n/a 1920 20
2070.2.bj \(\chi_{2070}(37, \cdot)\) n/a 1200 20
2070.2.bk \(\chi_{2070}(197, \cdot)\) n/a 960 20
2070.2.bn \(\chi_{2070}(49, \cdot)\) n/a 2880 20
2070.2.bo \(\chi_{2070}(11, \cdot)\) n/a 1920 20
2070.2.br \(\chi_{2070}(149, \cdot)\) n/a 2880 20
2070.2.bs \(\chi_{2070}(7, \cdot)\) n/a 5760 40
2070.2.bt \(\chi_{2070}(77, \cdot)\) n/a 5760 40

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(2070))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(2070)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(115))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(138))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(207))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(230))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(345))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(414))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(690))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1035))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2070))\)\(^{\oplus 1}\)