Properties

Label 2070.2
Level 2070
Weight 2
Dimension 27482
Nonzero newspaces 24
Sturm bound 456192
Trace bound 4

Downloads

Learn more

Defining parameters

Level: N N = 2070=232523 2070 = 2 \cdot 3^{2} \cdot 5 \cdot 23
Weight: k k = 2 2
Nonzero newspaces: 24 24
Sturm bound: 456192456192
Trace bound: 44

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(2070))M_{2}(\Gamma_1(2070)).

Total New Old
Modular forms 116864 27482 89382
Cusp forms 111233 27482 83751
Eisenstein series 5631 0 5631

Trace form

27482q6q212q36q410q5+12q624q7+6q8+28q9+22q10+52q11+16q12+28q13+40q14+48q156q168q17+8q1828q19++40q99+O(q100) 27482 q - 6 q^{2} - 12 q^{3} - 6 q^{4} - 10 q^{5} + 12 q^{6} - 24 q^{7} + 6 q^{8} + 28 q^{9} + 22 q^{10} + 52 q^{11} + 16 q^{12} + 28 q^{13} + 40 q^{14} + 48 q^{15} - 6 q^{16} - 8 q^{17} + 8 q^{18} - 28 q^{19}+ \cdots + 40 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(2070))S_{2}^{\mathrm{new}}(\Gamma_1(2070))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
2070.2.a χ2070(1,)\chi_{2070}(1, \cdot) 2070.2.a.a 1 1
2070.2.a.b 1
2070.2.a.c 1
2070.2.a.d 1
2070.2.a.e 1
2070.2.a.f 1
2070.2.a.g 1
2070.2.a.h 1
2070.2.a.i 1
2070.2.a.j 1
2070.2.a.k 1
2070.2.a.l 1
2070.2.a.m 1
2070.2.a.n 1
2070.2.a.o 1
2070.2.a.p 1
2070.2.a.q 1
2070.2.a.r 1
2070.2.a.s 1
2070.2.a.t 2
2070.2.a.u 2
2070.2.a.v 2
2070.2.a.w 2
2070.2.a.x 2
2070.2.a.y 2
2070.2.a.z 3
2070.2.d χ2070(829,)\chi_{2070}(829, \cdot) 2070.2.d.a 4 1
2070.2.d.b 4
2070.2.d.c 4
2070.2.d.d 6
2070.2.d.e 6
2070.2.d.f 8
2070.2.d.g 8
2070.2.d.h 16
2070.2.e χ2070(1241,)\chi_{2070}(1241, \cdot) 2070.2.e.a 16 1
2070.2.e.b 16
2070.2.h χ2070(2069,)\chi_{2070}(2069, \cdot) 2070.2.h.a 24 1
2070.2.h.b 24
2070.2.i χ2070(691,)\chi_{2070}(691, \cdot) n/a 176 2
2070.2.j χ2070(323,)\chi_{2070}(323, \cdot) 2070.2.j.a 4 2
2070.2.j.b 4
2070.2.j.c 4
2070.2.j.d 4
2070.2.j.e 4
2070.2.j.f 4
2070.2.j.g 12
2070.2.j.h 16
2070.2.j.i 16
2070.2.j.j 20
2070.2.k χ2070(1333,)\chi_{2070}(1333, \cdot) n/a 120 2
2070.2.n χ2070(689,)\chi_{2070}(689, \cdot) n/a 288 2
2070.2.q χ2070(551,)\chi_{2070}(551, \cdot) n/a 192 2
2070.2.r χ2070(139,)\chi_{2070}(139, \cdot) n/a 264 2
2070.2.u χ2070(271,)\chi_{2070}(271, \cdot) n/a 400 10
2070.2.x χ2070(47,)\chi_{2070}(47, \cdot) n/a 528 4
2070.2.y χ2070(367,)\chi_{2070}(367, \cdot) n/a 576 4
2070.2.z χ2070(89,)\chi_{2070}(89, \cdot) n/a 480 10
2070.2.bc χ2070(251,)\chi_{2070}(251, \cdot) n/a 320 10
2070.2.bd χ2070(289,)\chi_{2070}(289, \cdot) n/a 600 10
2070.2.bg χ2070(31,)\chi_{2070}(31, \cdot) n/a 1920 20
2070.2.bj χ2070(37,)\chi_{2070}(37, \cdot) n/a 1200 20
2070.2.bk χ2070(197,)\chi_{2070}(197, \cdot) n/a 960 20
2070.2.bn χ2070(49,)\chi_{2070}(49, \cdot) n/a 2880 20
2070.2.bo χ2070(11,)\chi_{2070}(11, \cdot) n/a 1920 20
2070.2.br χ2070(149,)\chi_{2070}(149, \cdot) n/a 2880 20
2070.2.bs χ2070(7,)\chi_{2070}(7, \cdot) n/a 5760 40
2070.2.bt χ2070(77,)\chi_{2070}(77, \cdot) n/a 5760 40

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(2070))S_{2}^{\mathrm{old}}(\Gamma_1(2070)) into lower level spaces

S2old(Γ1(2070)) S_{2}^{\mathrm{old}}(\Gamma_1(2070)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))24^{\oplus 24}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))12^{\oplus 12}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))16^{\oplus 16}\oplusS2new(Γ1(5))S_{2}^{\mathrm{new}}(\Gamma_1(5))12^{\oplus 12}\oplusS2new(Γ1(6))S_{2}^{\mathrm{new}}(\Gamma_1(6))8^{\oplus 8}\oplusS2new(Γ1(9))S_{2}^{\mathrm{new}}(\Gamma_1(9))8^{\oplus 8}\oplusS2new(Γ1(10))S_{2}^{\mathrm{new}}(\Gamma_1(10))6^{\oplus 6}\oplusS2new(Γ1(15))S_{2}^{\mathrm{new}}(\Gamma_1(15))8^{\oplus 8}\oplusS2new(Γ1(18))S_{2}^{\mathrm{new}}(\Gamma_1(18))4^{\oplus 4}\oplusS2new(Γ1(23))S_{2}^{\mathrm{new}}(\Gamma_1(23))12^{\oplus 12}\oplusS2new(Γ1(30))S_{2}^{\mathrm{new}}(\Gamma_1(30))4^{\oplus 4}\oplusS2new(Γ1(45))S_{2}^{\mathrm{new}}(\Gamma_1(45))4^{\oplus 4}\oplusS2new(Γ1(46))S_{2}^{\mathrm{new}}(\Gamma_1(46))6^{\oplus 6}\oplusS2new(Γ1(69))S_{2}^{\mathrm{new}}(\Gamma_1(69))8^{\oplus 8}\oplusS2new(Γ1(90))S_{2}^{\mathrm{new}}(\Gamma_1(90))2^{\oplus 2}\oplusS2new(Γ1(115))S_{2}^{\mathrm{new}}(\Gamma_1(115))6^{\oplus 6}\oplusS2new(Γ1(138))S_{2}^{\mathrm{new}}(\Gamma_1(138))4^{\oplus 4}\oplusS2new(Γ1(207))S_{2}^{\mathrm{new}}(\Gamma_1(207))4^{\oplus 4}\oplusS2new(Γ1(230))S_{2}^{\mathrm{new}}(\Gamma_1(230))3^{\oplus 3}\oplusS2new(Γ1(345))S_{2}^{\mathrm{new}}(\Gamma_1(345))4^{\oplus 4}\oplusS2new(Γ1(414))S_{2}^{\mathrm{new}}(\Gamma_1(414))2^{\oplus 2}\oplusS2new(Γ1(690))S_{2}^{\mathrm{new}}(\Gamma_1(690))2^{\oplus 2}\oplusS2new(Γ1(1035))S_{2}^{\mathrm{new}}(\Gamma_1(1035))2^{\oplus 2}