Properties

Label 2-208-1.1-c9-0-38
Degree $2$
Conductor $208$
Sign $-1$
Analytic cond. $107.127$
Root an. cond. $10.3502$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 250.·3-s + 1.55e3·5-s + 8.32e3·7-s + 4.30e4·9-s − 3.07e4·11-s + 2.85e4·13-s − 3.89e5·15-s − 6.37e5·17-s − 1.05e5·19-s − 2.08e6·21-s + 5.11e5·23-s + 4.66e5·25-s − 5.85e6·27-s + 7.81e5·29-s + 2.83e6·31-s + 7.70e6·33-s + 1.29e7·35-s + 1.22e7·37-s − 7.15e6·39-s − 6.83e6·41-s − 3.84e7·43-s + 6.69e7·45-s + 1.30e7·47-s + 2.90e7·49-s + 1.59e8·51-s − 2.42e7·53-s − 4.78e7·55-s + ⋯
L(s)  = 1  − 1.78·3-s + 1.11·5-s + 1.31·7-s + 2.18·9-s − 0.633·11-s + 0.277·13-s − 1.98·15-s − 1.85·17-s − 0.186·19-s − 2.34·21-s + 0.380·23-s + 0.238·25-s − 2.12·27-s + 0.205·29-s + 0.550·31-s + 1.13·33-s + 1.45·35-s + 1.07·37-s − 0.495·39-s − 0.377·41-s − 1.71·43-s + 2.43·45-s + 0.389·47-s + 0.719·49-s + 3.30·51-s − 0.422·53-s − 0.704·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(208\)    =    \(2^{4} \cdot 13\)
Sign: $-1$
Analytic conductor: \(107.127\)
Root analytic conductor: \(10.3502\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 208,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - 2.85e4T \)
good3 \( 1 + 250.T + 1.96e4T^{2} \)
5 \( 1 - 1.55e3T + 1.95e6T^{2} \)
7 \( 1 - 8.32e3T + 4.03e7T^{2} \)
11 \( 1 + 3.07e4T + 2.35e9T^{2} \)
17 \( 1 + 6.37e5T + 1.18e11T^{2} \)
19 \( 1 + 1.05e5T + 3.22e11T^{2} \)
23 \( 1 - 5.11e5T + 1.80e12T^{2} \)
29 \( 1 - 7.81e5T + 1.45e13T^{2} \)
31 \( 1 - 2.83e6T + 2.64e13T^{2} \)
37 \( 1 - 1.22e7T + 1.29e14T^{2} \)
41 \( 1 + 6.83e6T + 3.27e14T^{2} \)
43 \( 1 + 3.84e7T + 5.02e14T^{2} \)
47 \( 1 - 1.30e7T + 1.11e15T^{2} \)
53 \( 1 + 2.42e7T + 3.29e15T^{2} \)
59 \( 1 + 1.63e8T + 8.66e15T^{2} \)
61 \( 1 - 1.90e7T + 1.16e16T^{2} \)
67 \( 1 - 7.22e7T + 2.72e16T^{2} \)
71 \( 1 + 2.65e7T + 4.58e16T^{2} \)
73 \( 1 - 2.42e8T + 5.88e16T^{2} \)
79 \( 1 - 4.64e8T + 1.19e17T^{2} \)
83 \( 1 + 5.46e8T + 1.86e17T^{2} \)
89 \( 1 - 3.65e8T + 3.50e17T^{2} \)
97 \( 1 - 9.98e7T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.66704370040835682598586082630, −9.551777206714869085647467455149, −8.201451613993912249269769036199, −6.80910038270533237670810923221, −6.05247961861548853021674216887, −5.08359343174844389881588039583, −4.53054225710761360075774885240, −2.16573680279845600868060409414, −1.26658690714945075218574020483, 0, 1.26658690714945075218574020483, 2.16573680279845600868060409414, 4.53054225710761360075774885240, 5.08359343174844389881588039583, 6.05247961861548853021674216887, 6.80910038270533237670810923221, 8.201451613993912249269769036199, 9.551777206714869085647467455149, 10.66704370040835682598586082630

Graph of the $Z$-function along the critical line