[N,k,chi] = [208,10,Mod(1,208)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(208, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 10, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("208.1");
S:= CuspForms(chi, 10);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 , β 4 1,\beta_1,\beta_2,\beta_3,\beta_4 1 , β 1 , β 2 , β 3 , β 4 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 5 − 1438 x 3 − 4164 x 2 + 396957 x − 59580 x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 x 5 − 1 4 3 8 x 3 − 4 1 6 4 x 2 + 3 9 6 9 5 7 x − 5 9 5 8 0
x^5 - 1438*x^3 - 4164*x^2 + 396957*x - 59580
:
β 1 \beta_{1} β 1 = = =
8 ν 8\nu 8 ν
8*v
β 2 \beta_{2} β 2 = = =
( 3 ν 4 − 29 ν 3 − 2583 ν 2 + 4861 ν + 29588 ) / 544 ( 3\nu^{4} - 29\nu^{3} - 2583\nu^{2} + 4861\nu + 29588 ) / 544 ( 3 ν 4 − 2 9 ν 3 − 2 5 8 3 ν 2 + 4 8 6 1 ν + 2 9 5 8 8 ) / 5 4 4
(3*v^4 - 29*v^3 - 2583*v^2 + 4861*v + 29588) / 544
β 3 \beta_{3} β 3 = = =
( − ν 4 + 55 ν 3 + 317 ν 2 − 41559 ν + 189604 ) / 1088 ( -\nu^{4} + 55\nu^{3} + 317\nu^{2} - 41559\nu + 189604 ) / 1088 ( − ν 4 + 5 5 ν 3 + 3 1 7 ν 2 − 4 1 5 5 9 ν + 1 8 9 6 0 4 ) / 1 0 8 8
(-v^4 + 55*v^3 + 317*v^2 - 41559*v + 189604) / 1088
β 4 \beta_{4} β 4 = = =
( − 7 ν 4 + 113 ν 3 + 7659 ν 2 − 62161 ν − 1120772 ) / 1088 ( -7\nu^{4} + 113\nu^{3} + 7659\nu^{2} - 62161\nu - 1120772 ) / 1088 ( − 7 ν 4 + 1 1 3 ν 3 + 7 6 5 9 ν 2 − 6 2 1 6 1 ν − 1 1 2 0 7 7 2 ) / 1 0 8 8
(-7*v^4 + 113*v^3 + 7659*v^2 - 62161*v - 1120772) / 1088
ν \nu ν = = =
( β 1 ) / 8 ( \beta_1 ) / 8 ( β 1 ) / 8
(b1) / 8
ν 2 \nu^{2} ν 2 = = =
( 4 β 4 − 4 β 3 + 4 β 2 + 5 β 1 + 4600 ) / 8 ( 4\beta_{4} - 4\beta_{3} + 4\beta_{2} + 5\beta _1 + 4600 ) / 8 ( 4 β 4 − 4 β 3 + 4 β 2 + 5 β 1 + 4 6 0 0 ) / 8
(4*b4 - 4*b3 + 4*b2 + 5*b1 + 4600) / 8
ν 3 \nu^{3} ν 3 = = =
( 48 β 4 + 144 β 3 + 80 β 2 + 941 β 1 + 20000 ) / 8 ( 48\beta_{4} + 144\beta_{3} + 80\beta_{2} + 941\beta _1 + 20000 ) / 8 ( 4 8 β 4 + 1 4 4 β 3 + 8 0 β 2 + 9 4 1 β 1 + 2 0 0 0 0 ) / 8
(48*b4 + 144*b3 + 80*b2 + 941*b1 + 20000) / 8
ν 4 \nu^{4} ν 4 = = =
( 3908 β 4 − 2052 β 3 + 5668 β 2 + 11781 β 1 + 4075032 ) / 8 ( 3908\beta_{4} - 2052\beta_{3} + 5668\beta_{2} + 11781\beta _1 + 4075032 ) / 8 ( 3 9 0 8 β 4 − 2 0 5 2 β 3 + 5 6 6 8 β 2 + 1 1 7 8 1 β 1 + 4 0 7 5 0 3 2 ) / 8
(3908*b4 - 2052*b3 + 5668*b2 + 11781*b1 + 4075032) / 8
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
13 13 1 3
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 5 + 161 T 3 4 − 66777 T 3 3 − 7746921 T 3 2 + 1090724832 T 3 + 62057286864 T_{3}^{5} + 161T_{3}^{4} - 66777T_{3}^{3} - 7746921T_{3}^{2} + 1090724832T_{3} + 62057286864 T 3 5 + 1 6 1 T 3 4 − 6 6 7 7 7 T 3 3 − 7 7 4 6 9 2 1 T 3 2 + 1 0 9 0 7 2 4 8 3 2 T 3 + 6 2 0 5 7 2 8 6 8 6 4
T3^5 + 161*T3^4 - 66777*T3^3 - 7746921*T3^2 + 1090724832*T3 + 62057286864
acting on S 10 n e w ( Γ 0 ( 208 ) ) S_{10}^{\mathrm{new}}(\Gamma_0(208)) S 1 0 n e w ( Γ 0 ( 2 0 8 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 5 T^{5} T 5
T^5
3 3 3
T 5 + ⋯ + 62057286864 T^{5} + \cdots + 62057286864 T 5 + ⋯ + 6 2 0 5 7 2 8 6 8 6 4
T^5 + 161*T^4 - 66777*T^3 - 7746921*T^2 + 1090724832*T + 62057286864
5 5 5
T 5 + ⋯ + 512670311383500 T^{5} + \cdots + 512670311383500 T 5 + ⋯ + 5 1 2 6 7 0 3 1 1 3 8 3 5 0 0
T^5 - 1803*T^4 - 4092589*T^3 + 3475347315*T^2 + 5098977459000*T + 512670311383500
7 7 7
T 5 + ⋯ + 56 ⋯ 88 T^{5} + \cdots + 56\!\cdots\!88 T 5 + ⋯ + 5 6 ⋯ 8 8
T^5 + 10099*T^4 - 62513861*T^3 - 772947069643*T^2 - 556625160811972*T + 5684631812366849888
11 11 1 1
T 5 + ⋯ + 19 ⋯ 96 T^{5} + \cdots + 19\!\cdots\!96 T 5 + ⋯ + 1 9 ⋯ 9 6
T^5 + 121746*T^4 + 2479670132*T^3 - 100685267329800*T^2 - 2162481301083825888*T + 19450453762899214039296
13 13 1 3
( T − 28561 ) 5 (T - 28561)^{5} ( T − 2 8 5 6 1 ) 5
(T - 28561)^5
17 17 1 7
T 5 + ⋯ − 39 ⋯ 92 T^{5} + \cdots - 39\!\cdots\!92 T 5 + ⋯ − 3 9 ⋯ 9 2
T^5 + 495669*T^4 - 289191316885*T^3 - 98882562477434877*T^2 + 17126546902780079776656*T - 399153090461429727080315892
19 19 1 9
T 5 + ⋯ + 29 ⋯ 00 T^{5} + \cdots + 29\!\cdots\!00 T 5 + ⋯ + 2 9 ⋯ 0 0
T^5 - 840738*T^4 - 260984517612*T^3 + 132037771414811912*T^2 + 43590663172787565531168*T + 2943821455732214929563897600
23 23 2 3
T 5 + ⋯ + 42 ⋯ 52 T^{5} + \cdots + 42\!\cdots\!52 T 5 + ⋯ + 4 2 ⋯ 5 2
T^5 - 592152*T^4 - 3493027002432*T^3 + 5203750196460916224*T^2 - 2574986399360436795752448*T + 428621968496899390019183050752
29 29 2 9
T 5 + ⋯ − 44 ⋯ 20 T^{5} + \cdots - 44\!\cdots\!20 T 5 + ⋯ − 4 4 ⋯ 2 0
T^5 - 10678182*T^4 + 16260933487592*T^3 + 72928748649832496976*T^2 - 5368198298306611736512176*T - 44459311911325939063349211345120
31 31 3 1
T 5 + ⋯ − 48 ⋯ 64 T^{5} + \cdots - 48\!\cdots\!64 T 5 + ⋯ − 4 8 ⋯ 6 4
T^5 + 12885296*T^4 + 32338285004512*T^3 - 105055140872487792640*T^2 - 302260787091748018727890688*T - 48102238044029854183074610622464
37 37 3 7
T 5 + ⋯ − 51 ⋯ 48 T^{5} + \cdots - 51\!\cdots\!48 T 5 + ⋯ − 5 1 ⋯ 4 8
T^5 - 7171823*T^4 - 294915826692917*T^3 + 2641277396215514731471*T^2 + 6766082189398987208105351416*T - 51510793797841272350692715200003748
41 41 4 1
T 5 + ⋯ + 49 ⋯ 12 T^{5} + \cdots + 49\!\cdots\!12 T 5 + ⋯ + 4 9 ⋯ 1 2
T^5 - 9294012*T^4 - 1064915461247484*T^3 + 3176296057078183644768*T^2 + 138693246906168815606880689664*T + 494782986122239059884653191807270912
43 43 4 3
T 5 + ⋯ − 16 ⋯ 08 T^{5} + \cdots - 16\!\cdots\!08 T 5 + ⋯ − 1 6 ⋯ 0 8
T^5 + 12831975*T^4 - 2190268153760577*T^3 + 1063158495960812067089*T^2 + 1401924732869580555364611427320*T - 16185929811522090497298671067442009008
47 47 4 7
T 5 + ⋯ + 10 ⋯ 64 T^{5} + \cdots + 10\!\cdots\!64 T 5 + ⋯ + 1 0 ⋯ 6 4
T^5 + 43354215*T^4 - 3068542687682205*T^3 - 118384348682900685487527*T^2 + 1107959277012333917870538355356*T + 10856493902269268859639670525864260864
53 53 5 3
T 5 + ⋯ − 36 ⋯ 12 T^{5} + \cdots - 36\!\cdots\!12 T 5 + ⋯ − 3 6 ⋯ 1 2
T^5 - 93231780*T^4 - 2145547062601020*T^3 + 129076946266905410876064*T^2 + 1204843160261172809898664644096*T - 36723519617807505912655816002716762112
59 59 5 9
T 5 + ⋯ + 43 ⋯ 00 T^{5} + \cdots + 43\!\cdots\!00 T 5 + ⋯ + 4 3 ⋯ 0 0
T^5 + 246496182*T^4 - 10091472046384188*T^3 - 5930341249581317084193432*T^2 - 310469412650158482140152192248864*T + 4372455985727469565995467194585904697600
61 61 6 1
T 5 + ⋯ + 57 ⋯ 08 T^{5} + \cdots + 57\!\cdots\!08 T 5 + ⋯ + 5 7 ⋯ 0 8
T^5 + 132232612*T^4 - 6538173996828668*T^3 - 1049889574460517545593856*T^2 - 8951528105021696916307122275072*T + 578110697319573188159158003609953783808
67 67 6 7
T 5 + ⋯ + 85 ⋯ 64 T^{5} + \cdots + 85\!\cdots\!64 T 5 + ⋯ + 8 5 ⋯ 6 4
T^5 - 369388534*T^4 + 31699487729867620*T^3 + 1402869766077392493965528*T^2 - 273369432837307438768980109950752*T + 8568994877041624094412008079312263608064
71 71 7 1
T 5 + ⋯ + 41 ⋯ 92 T^{5} + \cdots + 41\!\cdots\!92 T 5 + ⋯ + 4 1 ⋯ 9 2
T^5 + 212150457*T^4 - 103163802673700829*T^3 - 4880249511470949355321833*T^2 + 1522066704005485905711115864136076*T + 41821928126676484730584325399818860813792
73 73 7 3
T 5 + ⋯ + 16 ⋯ 16 T^{5} + \cdots + 16\!\cdots\!16 T 5 + ⋯ + 1 6 ⋯ 1 6
T^5 + 252729806*T^4 - 180925206782132312*T^3 - 44119689947951932040208272*T^2 + 7409006510820583446681290412435536*T + 1670294301045437304637381500483582889726816
79 79 7 9
T 5 + ⋯ + 41 ⋯ 40 T^{5} + \cdots + 41\!\cdots\!40 T 5 + ⋯ + 4 1 ⋯ 4 0
T^5 - 1247271728*T^4 + 535977005216281984*T^3 - 86820229442392262196871168*T^2 + 2253193366828739192300052181815296*T + 410024861234306597370828654020014035107840
83 83 8 3
T 5 + ⋯ + 52 ⋯ 24 T^{5} + \cdots + 52\!\cdots\!24 T 5 + ⋯ + 5 2 ⋯ 2 4
T^5 + 1696894296*T^4 + 965304229131652832*T^3 + 216125993836531517484173568*T^2 + 18546842306111067162747956572418304*T + 526809733080455133331026189945941188122624
89 89 8 9
T 5 + ⋯ − 19 ⋯ 60 T^{5} + \cdots - 19\!\cdots\!60 T 5 + ⋯ − 1 9 ⋯ 6 0
T^5 + 753854382*T^4 - 360717372948090904*T^3 - 170822820065517807458198544*T^2 + 61162600944059411370271828202285904*T - 1903086219907992929581753200277786862796960
97 97 9 7
T 5 + ⋯ − 14 ⋯ 32 T^{5} + \cdots - 14\!\cdots\!32 T 5 + ⋯ − 1 4 ⋯ 3 2
T^5 - 3824606*T^4 - 2441997563116303880*T^3 + 153757537448202660807707632*T^2 + 1438608683131201717747160784795813904*T - 142814432358561470129404623607552203752395232
show more
show less