Properties

Label 2-208-1.1-c9-0-31
Degree $2$
Conductor $208$
Sign $-1$
Analytic cond. $107.127$
Root an. cond. $10.3502$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 47.8·3-s − 109.·5-s − 5.94e3·7-s − 1.73e4·9-s + 2.52e4·11-s + 2.85e4·13-s + 5.25e3·15-s + 1.09e5·17-s + 9.04e5·19-s + 2.84e5·21-s + 4.35e5·23-s − 1.94e6·25-s + 1.77e6·27-s + 6.44e6·29-s − 6.62e6·31-s − 1.20e6·33-s + 6.52e5·35-s + 4.14e6·37-s − 1.36e6·39-s + 1.49e7·41-s − 4.01e7·43-s + 1.90e6·45-s − 6.30e6·47-s − 4.98e6·49-s − 5.23e6·51-s + 1.53e7·53-s − 2.76e6·55-s + ⋯
L(s)  = 1  − 0.341·3-s − 0.0785·5-s − 0.936·7-s − 0.883·9-s + 0.519·11-s + 0.277·13-s + 0.0268·15-s + 0.317·17-s + 1.59·19-s + 0.319·21-s + 0.324·23-s − 0.993·25-s + 0.642·27-s + 1.69·29-s − 1.28·31-s − 0.177·33-s + 0.0735·35-s + 0.363·37-s − 0.0946·39-s + 0.826·41-s − 1.79·43-s + 0.0693·45-s − 0.188·47-s − 0.123·49-s − 0.108·51-s + 0.266·53-s − 0.0407·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(208\)    =    \(2^{4} \cdot 13\)
Sign: $-1$
Analytic conductor: \(107.127\)
Root analytic conductor: \(10.3502\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 208,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - 2.85e4T \)
good3 \( 1 + 47.8T + 1.96e4T^{2} \)
5 \( 1 + 109.T + 1.95e6T^{2} \)
7 \( 1 + 5.94e3T + 4.03e7T^{2} \)
11 \( 1 - 2.52e4T + 2.35e9T^{2} \)
17 \( 1 - 1.09e5T + 1.18e11T^{2} \)
19 \( 1 - 9.04e5T + 3.22e11T^{2} \)
23 \( 1 - 4.35e5T + 1.80e12T^{2} \)
29 \( 1 - 6.44e6T + 1.45e13T^{2} \)
31 \( 1 + 6.62e6T + 2.64e13T^{2} \)
37 \( 1 - 4.14e6T + 1.29e14T^{2} \)
41 \( 1 - 1.49e7T + 3.27e14T^{2} \)
43 \( 1 + 4.01e7T + 5.02e14T^{2} \)
47 \( 1 + 6.30e6T + 1.11e15T^{2} \)
53 \( 1 - 1.53e7T + 3.29e15T^{2} \)
59 \( 1 - 1.52e8T + 8.66e15T^{2} \)
61 \( 1 - 8.66e7T + 1.16e16T^{2} \)
67 \( 1 - 1.01e8T + 2.72e16T^{2} \)
71 \( 1 + 4.13e8T + 4.58e16T^{2} \)
73 \( 1 + 3.14e8T + 5.88e16T^{2} \)
79 \( 1 - 2.00e8T + 1.19e17T^{2} \)
83 \( 1 + 6.34e7T + 1.86e17T^{2} \)
89 \( 1 - 3.47e7T + 3.50e17T^{2} \)
97 \( 1 + 1.25e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.17141166420217528870790884133, −9.365241707898519012143571410896, −8.326281808654221457938322123238, −7.08077124576491817852382779598, −6.11263202233780018088132064070, −5.23371043423504310761354920702, −3.70088849799796462963140336257, −2.82386876762059450946972992543, −1.13933177173345191038160784256, 0, 1.13933177173345191038160784256, 2.82386876762059450946972992543, 3.70088849799796462963140336257, 5.23371043423504310761354920702, 6.11263202233780018088132064070, 7.08077124576491817852382779598, 8.326281808654221457938322123238, 9.365241707898519012143571410896, 10.17141166420217528870790884133

Graph of the $Z$-function along the critical line