L(s) = 1 | + (15.9 + 27.6i)3-s − 54.4·5-s + (−556. + 963. i)7-s + (585. − 1.01e3i)9-s + (3.56e3 + 6.17e3i)11-s + (7.56e3 + 2.34e3i)13-s + (−867. − 1.50e3i)15-s + (1.02e4 − 1.77e4i)17-s + (1.40e4 − 2.43e4i)19-s − 3.54e4·21-s + (1.69e4 + 2.93e4i)23-s − 7.51e4·25-s + 1.07e5·27-s + (8.77e4 + 1.51e5i)29-s − 1.56e4·31-s + ⋯ |
L(s) = 1 | + (0.340 + 0.590i)3-s − 0.194·5-s + (−0.613 + 1.06i)7-s + (0.267 − 0.463i)9-s + (0.807 + 1.39i)11-s + (0.955 + 0.296i)13-s + (−0.0663 − 0.114i)15-s + (0.506 − 0.876i)17-s + (0.469 − 0.813i)19-s − 0.835·21-s + (0.290 + 0.503i)23-s − 0.962·25-s + 1.04·27-s + (0.668 + 1.15i)29-s − 0.0945·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.471 - 0.881i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.471 - 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(2.247268786\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.247268786\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-7.56e3 - 2.34e3i)T \) |
good | 3 | \( 1 + (-15.9 - 27.6i)T + (-1.09e3 + 1.89e3i)T^{2} \) |
| 5 | \( 1 + 54.4T + 7.81e4T^{2} \) |
| 7 | \( 1 + (556. - 963. i)T + (-4.11e5 - 7.13e5i)T^{2} \) |
| 11 | \( 1 + (-3.56e3 - 6.17e3i)T + (-9.74e6 + 1.68e7i)T^{2} \) |
| 17 | \( 1 + (-1.02e4 + 1.77e4i)T + (-2.05e8 - 3.55e8i)T^{2} \) |
| 19 | \( 1 + (-1.40e4 + 2.43e4i)T + (-4.46e8 - 7.74e8i)T^{2} \) |
| 23 | \( 1 + (-1.69e4 - 2.93e4i)T + (-1.70e9 + 2.94e9i)T^{2} \) |
| 29 | \( 1 + (-8.77e4 - 1.51e5i)T + (-8.62e9 + 1.49e10i)T^{2} \) |
| 31 | \( 1 + 1.56e4T + 2.75e10T^{2} \) |
| 37 | \( 1 + (998. + 1.72e3i)T + (-4.74e10 + 8.22e10i)T^{2} \) |
| 41 | \( 1 + (1.11e5 + 1.93e5i)T + (-9.73e10 + 1.68e11i)T^{2} \) |
| 43 | \( 1 + (2.68e5 - 4.65e5i)T + (-1.35e11 - 2.35e11i)T^{2} \) |
| 47 | \( 1 + 5.42e5T + 5.06e11T^{2} \) |
| 53 | \( 1 - 1.85e6T + 1.17e12T^{2} \) |
| 59 | \( 1 + (6.65e5 - 1.15e6i)T + (-1.24e12 - 2.15e12i)T^{2} \) |
| 61 | \( 1 + (1.43e6 - 2.48e6i)T + (-1.57e12 - 2.72e12i)T^{2} \) |
| 67 | \( 1 + (1.41e6 + 2.45e6i)T + (-3.03e12 + 5.24e12i)T^{2} \) |
| 71 | \( 1 + (8.00e5 - 1.38e6i)T + (-4.54e12 - 7.87e12i)T^{2} \) |
| 73 | \( 1 - 1.39e6T + 1.10e13T^{2} \) |
| 79 | \( 1 - 2.33e6T + 1.92e13T^{2} \) |
| 83 | \( 1 + 2.37e6T + 2.71e13T^{2} \) |
| 89 | \( 1 + (3.52e6 + 6.10e6i)T + (-2.21e13 + 3.83e13i)T^{2} \) |
| 97 | \( 1 + (4.25e6 - 7.37e6i)T + (-4.03e13 - 6.99e13i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.69287593306671377084663954763, −10.17238598708552694689047551257, −9.297142821605990467825386387463, −8.934594298719970194408615138961, −7.30040065752265671448300821105, −6.38146268155069905173905980654, −5.02680450577054515499015346934, −3.87322850338985657369753701000, −2.85314038969573327238300437575, −1.31043157954465461931493570673,
0.58235615849731165194060371079, 1.51098374215917789527966705382, 3.29341464611578854888815881047, 4.01862030606725555017088645683, 5.86511987164250954573639045910, 6.70556248336846947539670702942, 7.901621637259656658246224133943, 8.482957551806704341292879302050, 9.955320639354248175210098142638, 10.73115309618100412777918850967