L(s) = 1 | + (15.9 + 27.6i)3-s − 54.4·5-s + (−556. + 963. i)7-s + (585. − 1.01e3i)9-s + (3.56e3 + 6.17e3i)11-s + (7.56e3 + 2.34e3i)13-s + (−867. − 1.50e3i)15-s + (1.02e4 − 1.77e4i)17-s + (1.40e4 − 2.43e4i)19-s − 3.54e4·21-s + (1.69e4 + 2.93e4i)23-s − 7.51e4·25-s + 1.07e5·27-s + (8.77e4 + 1.51e5i)29-s − 1.56e4·31-s + ⋯ |
L(s) = 1 | + (0.340 + 0.590i)3-s − 0.194·5-s + (−0.613 + 1.06i)7-s + (0.267 − 0.463i)9-s + (0.807 + 1.39i)11-s + (0.955 + 0.296i)13-s + (−0.0663 − 0.114i)15-s + (0.506 − 0.876i)17-s + (0.469 − 0.813i)19-s − 0.835·21-s + (0.290 + 0.503i)23-s − 0.962·25-s + 1.04·27-s + (0.668 + 1.15i)29-s − 0.0945·31-s + ⋯ |
Λ(s)=(=(208s/2ΓC(s)L(s)(−0.471−0.881i)Λ(8−s)
Λ(s)=(=(208s/2ΓC(s+7/2)L(s)(−0.471−0.881i)Λ(1−s)
Degree: |
2 |
Conductor: |
208
= 24⋅13
|
Sign: |
−0.471−0.881i
|
Analytic conductor: |
64.9760 |
Root analytic conductor: |
8.06077 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ208(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 208, ( :7/2), −0.471−0.881i)
|
Particular Values
L(4) |
≈ |
2.247268786 |
L(21) |
≈ |
2.247268786 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(−7.56e3−2.34e3i)T |
good | 3 | 1+(−15.9−27.6i)T+(−1.09e3+1.89e3i)T2 |
| 5 | 1+54.4T+7.81e4T2 |
| 7 | 1+(556.−963.i)T+(−4.11e5−7.13e5i)T2 |
| 11 | 1+(−3.56e3−6.17e3i)T+(−9.74e6+1.68e7i)T2 |
| 17 | 1+(−1.02e4+1.77e4i)T+(−2.05e8−3.55e8i)T2 |
| 19 | 1+(−1.40e4+2.43e4i)T+(−4.46e8−7.74e8i)T2 |
| 23 | 1+(−1.69e4−2.93e4i)T+(−1.70e9+2.94e9i)T2 |
| 29 | 1+(−8.77e4−1.51e5i)T+(−8.62e9+1.49e10i)T2 |
| 31 | 1+1.56e4T+2.75e10T2 |
| 37 | 1+(998.+1.72e3i)T+(−4.74e10+8.22e10i)T2 |
| 41 | 1+(1.11e5+1.93e5i)T+(−9.73e10+1.68e11i)T2 |
| 43 | 1+(2.68e5−4.65e5i)T+(−1.35e11−2.35e11i)T2 |
| 47 | 1+5.42e5T+5.06e11T2 |
| 53 | 1−1.85e6T+1.17e12T2 |
| 59 | 1+(6.65e5−1.15e6i)T+(−1.24e12−2.15e12i)T2 |
| 61 | 1+(1.43e6−2.48e6i)T+(−1.57e12−2.72e12i)T2 |
| 67 | 1+(1.41e6+2.45e6i)T+(−3.03e12+5.24e12i)T2 |
| 71 | 1+(8.00e5−1.38e6i)T+(−4.54e12−7.87e12i)T2 |
| 73 | 1−1.39e6T+1.10e13T2 |
| 79 | 1−2.33e6T+1.92e13T2 |
| 83 | 1+2.37e6T+2.71e13T2 |
| 89 | 1+(3.52e6+6.10e6i)T+(−2.21e13+3.83e13i)T2 |
| 97 | 1+(4.25e6−7.37e6i)T+(−4.03e13−6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.69287593306671377084663954763, −10.17238598708552694689047551257, −9.297142821605990467825386387463, −8.934594298719970194408615138961, −7.30040065752265671448300821105, −6.38146268155069905173905980654, −5.02680450577054515499015346934, −3.87322850338985657369753701000, −2.85314038969573327238300437575, −1.31043157954465461931493570673,
0.58235615849731165194060371079, 1.51098374215917789527966705382, 3.29341464611578854888815881047, 4.01862030606725555017088645683, 5.86511987164250954573639045910, 6.70556248336846947539670702942, 7.901621637259656658246224133943, 8.482957551806704341292879302050, 9.955320639354248175210098142638, 10.73115309618100412777918850967