L(s) = 1 | + (12.8 + 22.1i)3-s + 442.·5-s + (380. − 659. i)7-s + (765. − 1.32e3i)9-s + (3.05e3 + 5.29e3i)11-s + (409. + 7.91e3i)13-s + (5.66e3 + 9.81e3i)15-s + (−1.87e4 + 3.24e4i)17-s + (1.69e3 − 2.93e3i)19-s + 1.95e4·21-s + (−1.49e4 − 2.58e4i)23-s + 1.17e5·25-s + 9.52e4·27-s + (2.11e4 + 3.65e4i)29-s + 1.24e5·31-s + ⋯ |
L(s) = 1 | + (0.274 + 0.474i)3-s + 1.58·5-s + (0.419 − 0.726i)7-s + (0.349 − 0.605i)9-s + (0.692 + 1.19i)11-s + (0.0517 + 0.998i)13-s + (0.433 + 0.751i)15-s + (−0.926 + 1.60i)17-s + (0.0567 − 0.0983i)19-s + 0.459·21-s + (−0.255 − 0.443i)23-s + 1.50·25-s + 0.931·27-s + (0.160 + 0.278i)29-s + 0.747·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.664 - 0.747i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.664 - 0.747i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(3.725636725\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.725636725\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-409. - 7.91e3i)T \) |
good | 3 | \( 1 + (-12.8 - 22.1i)T + (-1.09e3 + 1.89e3i)T^{2} \) |
| 5 | \( 1 - 442.T + 7.81e4T^{2} \) |
| 7 | \( 1 + (-380. + 659. i)T + (-4.11e5 - 7.13e5i)T^{2} \) |
| 11 | \( 1 + (-3.05e3 - 5.29e3i)T + (-9.74e6 + 1.68e7i)T^{2} \) |
| 17 | \( 1 + (1.87e4 - 3.24e4i)T + (-2.05e8 - 3.55e8i)T^{2} \) |
| 19 | \( 1 + (-1.69e3 + 2.93e3i)T + (-4.46e8 - 7.74e8i)T^{2} \) |
| 23 | \( 1 + (1.49e4 + 2.58e4i)T + (-1.70e9 + 2.94e9i)T^{2} \) |
| 29 | \( 1 + (-2.11e4 - 3.65e4i)T + (-8.62e9 + 1.49e10i)T^{2} \) |
| 31 | \( 1 - 1.24e5T + 2.75e10T^{2} \) |
| 37 | \( 1 + (7.10e4 + 1.23e5i)T + (-4.74e10 + 8.22e10i)T^{2} \) |
| 41 | \( 1 + (-3.57e4 - 6.19e4i)T + (-9.73e10 + 1.68e11i)T^{2} \) |
| 43 | \( 1 + (6.38e3 - 1.10e4i)T + (-1.35e11 - 2.35e11i)T^{2} \) |
| 47 | \( 1 + 4.37e5T + 5.06e11T^{2} \) |
| 53 | \( 1 + 1.01e6T + 1.17e12T^{2} \) |
| 59 | \( 1 + (-8.79e5 + 1.52e6i)T + (-1.24e12 - 2.15e12i)T^{2} \) |
| 61 | \( 1 + (-8.45e5 + 1.46e6i)T + (-1.57e12 - 2.72e12i)T^{2} \) |
| 67 | \( 1 + (-1.70e6 - 2.96e6i)T + (-3.03e12 + 5.24e12i)T^{2} \) |
| 71 | \( 1 + (3.97e5 - 6.88e5i)T + (-4.54e12 - 7.87e12i)T^{2} \) |
| 73 | \( 1 - 3.45e6T + 1.10e13T^{2} \) |
| 79 | \( 1 + 6.86e6T + 1.92e13T^{2} \) |
| 83 | \( 1 - 8.04e6T + 2.71e13T^{2} \) |
| 89 | \( 1 + (-5.24e5 - 9.09e5i)T + (-2.21e13 + 3.83e13i)T^{2} \) |
| 97 | \( 1 + (5.62e5 - 9.75e5i)T + (-4.03e13 - 6.99e13i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.96804609494046739417215929216, −10.02243936427835798816169923685, −9.510393717844608821142338394958, −8.559442966803491141884491805315, −6.85069937005433383465942283372, −6.32599174905702285076457112259, −4.70084033168923456851501731503, −3.95683453622646876611055229424, −2.09801078209084320074673691543, −1.36349135790126496746913337440,
0.924255951887077341990174260929, 2.05753096095787410180823584916, 2.90646231910220570291504791741, 4.96244559292228386561895883220, 5.78822390074793489819686509122, 6.76186092419084200535953791392, 8.125326672424758543480414600802, 8.991746228266619249701170244515, 9.889246760427674165572049802891, 10.96068406345758454974979632643