Properties

Label 2-209-1.1-c3-0-23
Degree $2$
Conductor $209$
Sign $1$
Analytic cond. $12.3313$
Root an. cond. $3.51160$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.33·2-s + 8.27·3-s − 6.21·4-s + 12.3·5-s − 11.0·6-s + 31.4·7-s + 18.9·8-s + 41.4·9-s − 16.4·10-s − 11·11-s − 51.4·12-s − 82.5·13-s − 42.0·14-s + 101.·15-s + 24.4·16-s + 56.4·17-s − 55.2·18-s − 19·19-s − 76.5·20-s + 260.·21-s + 14.6·22-s + 4.15·23-s + 156.·24-s + 26.3·25-s + 110.·26-s + 119.·27-s − 195.·28-s + ⋯
L(s)  = 1  − 0.471·2-s + 1.59·3-s − 0.777·4-s + 1.10·5-s − 0.751·6-s + 1.69·7-s + 0.838·8-s + 1.53·9-s − 0.519·10-s − 0.301·11-s − 1.23·12-s − 1.76·13-s − 0.802·14-s + 1.75·15-s + 0.381·16-s + 0.805·17-s − 0.723·18-s − 0.229·19-s − 0.855·20-s + 2.70·21-s + 0.142·22-s + 0.0376·23-s + 1.33·24-s + 0.210·25-s + 0.831·26-s + 0.849·27-s − 1.32·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(209\)    =    \(11 \cdot 19\)
Sign: $1$
Analytic conductor: \(12.3313\)
Root analytic conductor: \(3.51160\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 209,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.660665837\)
\(L(\frac12)\) \(\approx\) \(2.660665837\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + 11T \)
19 \( 1 + 19T \)
good2 \( 1 + 1.33T + 8T^{2} \)
3 \( 1 - 8.27T + 27T^{2} \)
5 \( 1 - 12.3T + 125T^{2} \)
7 \( 1 - 31.4T + 343T^{2} \)
13 \( 1 + 82.5T + 2.19e3T^{2} \)
17 \( 1 - 56.4T + 4.91e3T^{2} \)
23 \( 1 - 4.15T + 1.21e4T^{2} \)
29 \( 1 + 22.9T + 2.43e4T^{2} \)
31 \( 1 - 214.T + 2.97e4T^{2} \)
37 \( 1 - 15.8T + 5.06e4T^{2} \)
41 \( 1 - 238.T + 6.89e4T^{2} \)
43 \( 1 + 232.T + 7.95e4T^{2} \)
47 \( 1 + 217.T + 1.03e5T^{2} \)
53 \( 1 - 675.T + 1.48e5T^{2} \)
59 \( 1 - 45.3T + 2.05e5T^{2} \)
61 \( 1 + 811.T + 2.26e5T^{2} \)
67 \( 1 + 26.5T + 3.00e5T^{2} \)
71 \( 1 + 642.T + 3.57e5T^{2} \)
73 \( 1 + 943.T + 3.89e5T^{2} \)
79 \( 1 - 1.21e3T + 4.93e5T^{2} \)
83 \( 1 + 307.T + 5.71e5T^{2} \)
89 \( 1 - 138.T + 7.04e5T^{2} \)
97 \( 1 - 1.53e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.07257003464603445114650298803, −10.37938647756755361724412644799, −9.769354421857963124893359956377, −8.941482626919425429438751442835, −8.037614677222007598662000696984, −7.51271419447680062040049056255, −5.30170707830746705952462254185, −4.41712301233152325787619501224, −2.56636590331600315176852181809, −1.54537674705087091199786122453, 1.54537674705087091199786122453, 2.56636590331600315176852181809, 4.41712301233152325787619501224, 5.30170707830746705952462254185, 7.51271419447680062040049056255, 8.037614677222007598662000696984, 8.941482626919425429438751442835, 9.769354421857963124893359956377, 10.37938647756755361724412644799, 12.07257003464603445114650298803

Graph of the $Z$-function along the critical line