Properties

Label 209.4.a.c.1.6
Level $209$
Weight $4$
Character 209.1
Self dual yes
Analytic conductor $12.331$
Analytic rank $0$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,4,Mod(1,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 209 = 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 209.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.3313991912\)
Analytic rank: \(0\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - 2 x^{12} - 91 x^{11} + 176 x^{10} + 3117 x^{9} - 5786 x^{8} - 49725 x^{7} + 87196 x^{6} + \cdots - 86016 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.33472\) of defining polynomial
Character \(\chi\) \(=\) 209.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.33472 q^{2} +8.27114 q^{3} -6.21852 q^{4} +12.3033 q^{5} -11.0397 q^{6} +31.4819 q^{7} +18.9777 q^{8} +41.4117 q^{9} -16.4215 q^{10} -11.0000 q^{11} -51.4342 q^{12} -82.5704 q^{13} -42.0195 q^{14} +101.763 q^{15} +24.4182 q^{16} +56.4729 q^{17} -55.2730 q^{18} -19.0000 q^{19} -76.5086 q^{20} +260.391 q^{21} +14.6819 q^{22} +4.15831 q^{23} +156.968 q^{24} +26.3720 q^{25} +110.208 q^{26} +119.201 q^{27} -195.771 q^{28} -22.9131 q^{29} -135.825 q^{30} +214.217 q^{31} -184.413 q^{32} -90.9825 q^{33} -75.3756 q^{34} +387.332 q^{35} -257.519 q^{36} +15.8859 q^{37} +25.3597 q^{38} -682.951 q^{39} +233.490 q^{40} +238.905 q^{41} -347.549 q^{42} -232.734 q^{43} +68.4037 q^{44} +509.502 q^{45} -5.55018 q^{46} -217.809 q^{47} +201.966 q^{48} +648.109 q^{49} -35.1993 q^{50} +467.095 q^{51} +513.466 q^{52} +675.520 q^{53} -159.100 q^{54} -135.337 q^{55} +597.455 q^{56} -157.152 q^{57} +30.5826 q^{58} +45.3345 q^{59} -632.813 q^{60} -811.571 q^{61} -285.920 q^{62} +1303.72 q^{63} +50.7947 q^{64} -1015.89 q^{65} +121.436 q^{66} -26.5741 q^{67} -351.178 q^{68} +34.3940 q^{69} -516.980 q^{70} -642.839 q^{71} +785.900 q^{72} -943.969 q^{73} -21.2033 q^{74} +218.127 q^{75} +118.152 q^{76} -346.301 q^{77} +911.548 q^{78} +1212.88 q^{79} +300.425 q^{80} -132.188 q^{81} -318.871 q^{82} -307.975 q^{83} -1619.25 q^{84} +694.805 q^{85} +310.635 q^{86} -189.517 q^{87} -208.755 q^{88} +138.983 q^{89} -680.042 q^{90} -2599.47 q^{91} -25.8586 q^{92} +1771.82 q^{93} +290.714 q^{94} -233.763 q^{95} -1525.31 q^{96} +1530.30 q^{97} -865.044 q^{98} -455.528 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q - 2 q^{2} + 11 q^{3} + 82 q^{4} + 8 q^{5} + 13 q^{6} + 39 q^{7} + 6 q^{8} + 156 q^{9} + 124 q^{10} - 143 q^{11} + 247 q^{12} - 23 q^{13} + 47 q^{14} + 278 q^{15} + 526 q^{16} + 73 q^{17} - 165 q^{18}+ \cdots - 1716 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.33472 −0.471895 −0.235947 0.971766i \(-0.575819\pi\)
−0.235947 + 0.971766i \(0.575819\pi\)
\(3\) 8.27114 1.59178 0.795890 0.605441i \(-0.207003\pi\)
0.795890 + 0.605441i \(0.207003\pi\)
\(4\) −6.21852 −0.777315
\(5\) 12.3033 1.10044 0.550222 0.835019i \(-0.314543\pi\)
0.550222 + 0.835019i \(0.314543\pi\)
\(6\) −11.0397 −0.751153
\(7\) 31.4819 1.69986 0.849931 0.526894i \(-0.176644\pi\)
0.849931 + 0.526894i \(0.176644\pi\)
\(8\) 18.9777 0.838706
\(9\) 41.4117 1.53377
\(10\) −16.4215 −0.519294
\(11\) −11.0000 −0.301511
\(12\) −51.4342 −1.23732
\(13\) −82.5704 −1.76161 −0.880804 0.473481i \(-0.842997\pi\)
−0.880804 + 0.473481i \(0.842997\pi\)
\(14\) −42.0195 −0.802156
\(15\) 101.763 1.75166
\(16\) 24.4182 0.381534
\(17\) 56.4729 0.805688 0.402844 0.915269i \(-0.368022\pi\)
0.402844 + 0.915269i \(0.368022\pi\)
\(18\) −55.2730 −0.723776
\(19\) −19.0000 −0.229416
\(20\) −76.5086 −0.855392
\(21\) 260.391 2.70581
\(22\) 14.6819 0.142282
\(23\) 4.15831 0.0376986 0.0188493 0.999822i \(-0.494000\pi\)
0.0188493 + 0.999822i \(0.494000\pi\)
\(24\) 156.968 1.33504
\(25\) 26.3720 0.210976
\(26\) 110.208 0.831293
\(27\) 119.201 0.849638
\(28\) −195.771 −1.32133
\(29\) −22.9131 −0.146719 −0.0733596 0.997306i \(-0.523372\pi\)
−0.0733596 + 0.997306i \(0.523372\pi\)
\(30\) −135.825 −0.826602
\(31\) 214.217 1.24111 0.620557 0.784161i \(-0.286906\pi\)
0.620557 + 0.784161i \(0.286906\pi\)
\(32\) −184.413 −1.01875
\(33\) −90.9825 −0.479940
\(34\) −75.3756 −0.380200
\(35\) 387.332 1.87060
\(36\) −257.519 −1.19222
\(37\) 15.8859 0.0705846 0.0352923 0.999377i \(-0.488764\pi\)
0.0352923 + 0.999377i \(0.488764\pi\)
\(38\) 25.3597 0.108260
\(39\) −682.951 −2.80409
\(40\) 233.490 0.922949
\(41\) 238.905 0.910017 0.455008 0.890487i \(-0.349636\pi\)
0.455008 + 0.890487i \(0.349636\pi\)
\(42\) −347.549 −1.27686
\(43\) −232.734 −0.825386 −0.412693 0.910870i \(-0.635412\pi\)
−0.412693 + 0.910870i \(0.635412\pi\)
\(44\) 68.4037 0.234369
\(45\) 509.502 1.68782
\(46\) −5.55018 −0.0177898
\(47\) −217.809 −0.675973 −0.337986 0.941151i \(-0.609746\pi\)
−0.337986 + 0.941151i \(0.609746\pi\)
\(48\) 201.966 0.607319
\(49\) 648.109 1.88953
\(50\) −35.1993 −0.0995586
\(51\) 467.095 1.28248
\(52\) 513.466 1.36932
\(53\) 675.520 1.75075 0.875375 0.483445i \(-0.160615\pi\)
0.875375 + 0.483445i \(0.160615\pi\)
\(54\) −159.100 −0.400940
\(55\) −135.337 −0.331796
\(56\) 597.455 1.42568
\(57\) −157.152 −0.365180
\(58\) 30.5826 0.0692361
\(59\) 45.3345 0.100035 0.0500173 0.998748i \(-0.484072\pi\)
0.0500173 + 0.998748i \(0.484072\pi\)
\(60\) −632.813 −1.36160
\(61\) −811.571 −1.70346 −0.851730 0.523982i \(-0.824446\pi\)
−0.851730 + 0.523982i \(0.824446\pi\)
\(62\) −285.920 −0.585675
\(63\) 1303.72 2.60719
\(64\) 50.7947 0.0992084
\(65\) −1015.89 −1.93855
\(66\) 121.436 0.226481
\(67\) −26.5741 −0.0484559 −0.0242280 0.999706i \(-0.507713\pi\)
−0.0242280 + 0.999706i \(0.507713\pi\)
\(68\) −351.178 −0.626274
\(69\) 34.3940 0.0600079
\(70\) −516.980 −0.882727
\(71\) −642.839 −1.07452 −0.537261 0.843416i \(-0.680541\pi\)
−0.537261 + 0.843416i \(0.680541\pi\)
\(72\) 785.900 1.28638
\(73\) −943.969 −1.51347 −0.756735 0.653722i \(-0.773206\pi\)
−0.756735 + 0.653722i \(0.773206\pi\)
\(74\) −21.2033 −0.0333085
\(75\) 218.127 0.335828
\(76\) 118.152 0.178328
\(77\) −346.301 −0.512528
\(78\) 911.548 1.32324
\(79\) 1212.88 1.72733 0.863666 0.504065i \(-0.168163\pi\)
0.863666 + 0.504065i \(0.168163\pi\)
\(80\) 300.425 0.419857
\(81\) −132.188 −0.181328
\(82\) −318.871 −0.429432
\(83\) −307.975 −0.407285 −0.203643 0.979045i \(-0.565278\pi\)
−0.203643 + 0.979045i \(0.565278\pi\)
\(84\) −1619.25 −2.10327
\(85\) 694.805 0.886614
\(86\) 310.635 0.389495
\(87\) −189.517 −0.233545
\(88\) −208.755 −0.252879
\(89\) 138.983 0.165530 0.0827649 0.996569i \(-0.473625\pi\)
0.0827649 + 0.996569i \(0.473625\pi\)
\(90\) −680.042 −0.796475
\(91\) −2599.47 −2.99449
\(92\) −25.8586 −0.0293037
\(93\) 1771.82 1.97558
\(94\) 290.714 0.318988
\(95\) −233.763 −0.252459
\(96\) −1525.31 −1.62163
\(97\) 1530.30 1.60184 0.800922 0.598769i \(-0.204343\pi\)
0.800922 + 0.598769i \(0.204343\pi\)
\(98\) −865.044 −0.891660
\(99\) −455.528 −0.462448
\(100\) −163.995 −0.163995
\(101\) −1380.49 −1.36004 −0.680021 0.733192i \(-0.738029\pi\)
−0.680021 + 0.733192i \(0.738029\pi\)
\(102\) −623.441 −0.605195
\(103\) −1929.11 −1.84545 −0.922724 0.385462i \(-0.874042\pi\)
−0.922724 + 0.385462i \(0.874042\pi\)
\(104\) −1567.00 −1.47747
\(105\) 3203.68 2.97759
\(106\) −901.630 −0.826170
\(107\) −1258.37 −1.13693 −0.568465 0.822707i \(-0.692463\pi\)
−0.568465 + 0.822707i \(0.692463\pi\)
\(108\) −741.254 −0.660437
\(109\) −271.913 −0.238940 −0.119470 0.992838i \(-0.538120\pi\)
−0.119470 + 0.992838i \(0.538120\pi\)
\(110\) 180.637 0.156573
\(111\) 131.395 0.112355
\(112\) 768.731 0.648556
\(113\) 917.608 0.763905 0.381953 0.924182i \(-0.375252\pi\)
0.381953 + 0.924182i \(0.375252\pi\)
\(114\) 209.753 0.172326
\(115\) 51.1611 0.0414852
\(116\) 142.486 0.114047
\(117\) −3419.38 −2.70189
\(118\) −60.5088 −0.0472059
\(119\) 1777.87 1.36956
\(120\) 1931.22 1.46913
\(121\) 121.000 0.0909091
\(122\) 1083.22 0.803854
\(123\) 1976.01 1.44855
\(124\) −1332.11 −0.964737
\(125\) −1213.45 −0.868276
\(126\) −1740.10 −1.23032
\(127\) 219.902 0.153647 0.0768234 0.997045i \(-0.475522\pi\)
0.0768234 + 0.997045i \(0.475522\pi\)
\(128\) 1407.51 0.971934
\(129\) −1924.97 −1.31383
\(130\) 1355.93 0.914792
\(131\) −2607.35 −1.73897 −0.869484 0.493961i \(-0.835548\pi\)
−0.869484 + 0.493961i \(0.835548\pi\)
\(132\) 565.777 0.373065
\(133\) −598.156 −0.389975
\(134\) 35.4690 0.0228661
\(135\) 1466.57 0.934979
\(136\) 1071.73 0.675735
\(137\) 819.736 0.511203 0.255601 0.966782i \(-0.417727\pi\)
0.255601 + 0.966782i \(0.417727\pi\)
\(138\) −45.9063 −0.0283174
\(139\) −500.781 −0.305581 −0.152790 0.988259i \(-0.548826\pi\)
−0.152790 + 0.988259i \(0.548826\pi\)
\(140\) −2408.63 −1.45405
\(141\) −1801.53 −1.07600
\(142\) 858.011 0.507061
\(143\) 908.274 0.531145
\(144\) 1011.20 0.585184
\(145\) −281.908 −0.161456
\(146\) 1259.93 0.714198
\(147\) 5360.60 3.00772
\(148\) −98.7870 −0.0548665
\(149\) −2290.13 −1.25916 −0.629581 0.776935i \(-0.716773\pi\)
−0.629581 + 0.776935i \(0.716773\pi\)
\(150\) −291.138 −0.158475
\(151\) 167.288 0.0901570 0.0450785 0.998983i \(-0.485646\pi\)
0.0450785 + 0.998983i \(0.485646\pi\)
\(152\) −360.577 −0.192412
\(153\) 2338.64 1.23574
\(154\) 462.215 0.241859
\(155\) 2635.59 1.36578
\(156\) 4246.94 2.17966
\(157\) 2415.73 1.22800 0.614001 0.789305i \(-0.289559\pi\)
0.614001 + 0.789305i \(0.289559\pi\)
\(158\) −1618.85 −0.815119
\(159\) 5587.31 2.78681
\(160\) −2268.90 −1.12108
\(161\) 130.912 0.0640824
\(162\) 176.434 0.0855677
\(163\) 1949.28 0.936682 0.468341 0.883548i \(-0.344852\pi\)
0.468341 + 0.883548i \(0.344852\pi\)
\(164\) −1485.64 −0.707370
\(165\) −1119.39 −0.528147
\(166\) 411.061 0.192196
\(167\) −2313.86 −1.07217 −0.536084 0.844165i \(-0.680097\pi\)
−0.536084 + 0.844165i \(0.680097\pi\)
\(168\) 4941.63 2.26938
\(169\) 4620.87 2.10326
\(170\) −927.371 −0.418389
\(171\) −786.822 −0.351870
\(172\) 1447.26 0.641585
\(173\) 14.6757 0.00644957 0.00322478 0.999995i \(-0.498974\pi\)
0.00322478 + 0.999995i \(0.498974\pi\)
\(174\) 252.953 0.110209
\(175\) 830.241 0.358630
\(176\) −268.600 −0.115037
\(177\) 374.968 0.159233
\(178\) −185.503 −0.0781127
\(179\) −2099.68 −0.876744 −0.438372 0.898794i \(-0.644445\pi\)
−0.438372 + 0.898794i \(0.644445\pi\)
\(180\) −3168.35 −1.31197
\(181\) −1770.79 −0.727194 −0.363597 0.931556i \(-0.618451\pi\)
−0.363597 + 0.931556i \(0.618451\pi\)
\(182\) 3469.57 1.41308
\(183\) −6712.61 −2.71153
\(184\) 78.9154 0.0316180
\(185\) 195.450 0.0776744
\(186\) −2364.88 −0.932267
\(187\) −621.202 −0.242924
\(188\) 1354.45 0.525444
\(189\) 3752.67 1.44427
\(190\) 312.009 0.119134
\(191\) 508.629 0.192686 0.0963432 0.995348i \(-0.469285\pi\)
0.0963432 + 0.995348i \(0.469285\pi\)
\(192\) 420.130 0.157918
\(193\) 2185.03 0.814932 0.407466 0.913220i \(-0.366413\pi\)
0.407466 + 0.913220i \(0.366413\pi\)
\(194\) −2042.53 −0.755902
\(195\) −8402.57 −3.08575
\(196\) −4030.28 −1.46876
\(197\) 538.713 0.194831 0.0974155 0.995244i \(-0.468942\pi\)
0.0974155 + 0.995244i \(0.468942\pi\)
\(198\) 608.003 0.218227
\(199\) 1263.97 0.450253 0.225127 0.974330i \(-0.427720\pi\)
0.225127 + 0.974330i \(0.427720\pi\)
\(200\) 500.482 0.176947
\(201\) −219.798 −0.0771312
\(202\) 1842.57 0.641797
\(203\) −721.348 −0.249402
\(204\) −2904.64 −0.996890
\(205\) 2939.33 1.00142
\(206\) 2574.82 0.870857
\(207\) 172.203 0.0578208
\(208\) −2016.22 −0.672114
\(209\) 209.000 0.0691714
\(210\) −4276.01 −1.40511
\(211\) 4820.83 1.57289 0.786445 0.617660i \(-0.211919\pi\)
0.786445 + 0.617660i \(0.211919\pi\)
\(212\) −4200.73 −1.36088
\(213\) −5317.01 −1.71040
\(214\) 1679.58 0.536511
\(215\) −2863.40 −0.908291
\(216\) 2262.17 0.712597
\(217\) 6743.96 2.10972
\(218\) 362.927 0.112755
\(219\) −7807.70 −2.40911
\(220\) 841.594 0.257910
\(221\) −4662.99 −1.41931
\(222\) −175.375 −0.0530199
\(223\) 2460.87 0.738977 0.369489 0.929235i \(-0.379533\pi\)
0.369489 + 0.929235i \(0.379533\pi\)
\(224\) −5805.68 −1.73173
\(225\) 1092.11 0.323588
\(226\) −1224.75 −0.360483
\(227\) 865.102 0.252946 0.126473 0.991970i \(-0.459634\pi\)
0.126473 + 0.991970i \(0.459634\pi\)
\(228\) 977.251 0.283860
\(229\) 1563.38 0.451141 0.225571 0.974227i \(-0.427575\pi\)
0.225571 + 0.974227i \(0.427575\pi\)
\(230\) −68.2858 −0.0195766
\(231\) −2864.30 −0.815832
\(232\) −434.839 −0.123054
\(233\) −6475.61 −1.82074 −0.910368 0.413800i \(-0.864201\pi\)
−0.910368 + 0.413800i \(0.864201\pi\)
\(234\) 4563.91 1.27501
\(235\) −2679.78 −0.743870
\(236\) −281.913 −0.0777585
\(237\) 10031.9 2.74953
\(238\) −2372.96 −0.646288
\(239\) 1253.64 0.339294 0.169647 0.985505i \(-0.445737\pi\)
0.169647 + 0.985505i \(0.445737\pi\)
\(240\) 2484.86 0.668320
\(241\) 6223.27 1.66339 0.831693 0.555235i \(-0.187372\pi\)
0.831693 + 0.555235i \(0.187372\pi\)
\(242\) −161.501 −0.0428995
\(243\) −4311.77 −1.13827
\(244\) 5046.77 1.32412
\(245\) 7973.90 2.07932
\(246\) −2637.43 −0.683562
\(247\) 1568.84 0.404141
\(248\) 4065.36 1.04093
\(249\) −2547.31 −0.648309
\(250\) 1619.62 0.409735
\(251\) −5884.69 −1.47983 −0.739917 0.672698i \(-0.765135\pi\)
−0.739917 + 0.672698i \(0.765135\pi\)
\(252\) −8107.20 −2.02661
\(253\) −45.7414 −0.0113666
\(254\) −293.507 −0.0725051
\(255\) 5746.83 1.41130
\(256\) −2284.99 −0.557859
\(257\) 2168.60 0.526357 0.263179 0.964747i \(-0.415229\pi\)
0.263179 + 0.964747i \(0.415229\pi\)
\(258\) 2569.30 0.619991
\(259\) 500.119 0.119984
\(260\) 6317.34 1.50686
\(261\) −948.870 −0.225033
\(262\) 3480.08 0.820610
\(263\) 2145.02 0.502918 0.251459 0.967868i \(-0.419090\pi\)
0.251459 + 0.967868i \(0.419090\pi\)
\(264\) −1726.64 −0.402528
\(265\) 8311.14 1.92660
\(266\) 798.371 0.184027
\(267\) 1149.55 0.263487
\(268\) 165.252 0.0376655
\(269\) −1673.73 −0.379366 −0.189683 0.981845i \(-0.560746\pi\)
−0.189683 + 0.981845i \(0.560746\pi\)
\(270\) −1957.46 −0.441212
\(271\) 3402.76 0.762742 0.381371 0.924422i \(-0.375452\pi\)
0.381371 + 0.924422i \(0.375452\pi\)
\(272\) 1378.97 0.307398
\(273\) −21500.6 −4.76657
\(274\) −1094.12 −0.241234
\(275\) −290.092 −0.0636117
\(276\) −213.880 −0.0466451
\(277\) −2128.78 −0.461756 −0.230878 0.972983i \(-0.574160\pi\)
−0.230878 + 0.972983i \(0.574160\pi\)
\(278\) 668.403 0.144202
\(279\) 8871.09 1.90358
\(280\) 7350.69 1.56889
\(281\) −544.611 −0.115618 −0.0578092 0.998328i \(-0.518412\pi\)
−0.0578092 + 0.998328i \(0.518412\pi\)
\(282\) 2404.54 0.507759
\(283\) −3474.36 −0.729786 −0.364893 0.931050i \(-0.618894\pi\)
−0.364893 + 0.931050i \(0.618894\pi\)
\(284\) 3997.51 0.835242
\(285\) −1933.49 −0.401860
\(286\) −1212.29 −0.250644
\(287\) 7521.18 1.54690
\(288\) −7636.87 −1.56252
\(289\) −1723.81 −0.350867
\(290\) 376.268 0.0761904
\(291\) 12657.4 2.54978
\(292\) 5870.09 1.17644
\(293\) 2397.73 0.478079 0.239039 0.971010i \(-0.423168\pi\)
0.239039 + 0.971010i \(0.423168\pi\)
\(294\) −7154.90 −1.41933
\(295\) 557.765 0.110083
\(296\) 301.479 0.0591997
\(297\) −1311.21 −0.256176
\(298\) 3056.69 0.594192
\(299\) −343.353 −0.0664102
\(300\) −1356.43 −0.261044
\(301\) −7326.90 −1.40304
\(302\) −223.283 −0.0425446
\(303\) −11418.3 −2.16489
\(304\) −463.946 −0.0875300
\(305\) −9985.03 −1.87456
\(306\) −3121.43 −0.583138
\(307\) −7546.79 −1.40299 −0.701495 0.712675i \(-0.747484\pi\)
−0.701495 + 0.712675i \(0.747484\pi\)
\(308\) 2153.48 0.398396
\(309\) −15955.9 −2.93755
\(310\) −3517.77 −0.644503
\(311\) −2174.40 −0.396459 −0.198229 0.980156i \(-0.563519\pi\)
−0.198229 + 0.980156i \(0.563519\pi\)
\(312\) −12960.9 −2.35181
\(313\) 753.096 0.135998 0.0679992 0.997685i \(-0.478338\pi\)
0.0679992 + 0.997685i \(0.478338\pi\)
\(314\) −3224.32 −0.579488
\(315\) 16040.1 2.86907
\(316\) −7542.30 −1.34268
\(317\) 9331.70 1.65338 0.826688 0.562660i \(-0.190222\pi\)
0.826688 + 0.562660i \(0.190222\pi\)
\(318\) −7457.50 −1.31508
\(319\) 252.044 0.0442375
\(320\) 624.944 0.109173
\(321\) −10408.2 −1.80974
\(322\) −174.730 −0.0302402
\(323\) −1072.99 −0.184838
\(324\) 822.015 0.140949
\(325\) −2177.55 −0.371657
\(326\) −2601.74 −0.442016
\(327\) −2249.03 −0.380341
\(328\) 4533.88 0.763236
\(329\) −6857.04 −1.14906
\(330\) 1494.07 0.249230
\(331\) −5752.17 −0.955190 −0.477595 0.878580i \(-0.658491\pi\)
−0.477595 + 0.878580i \(0.658491\pi\)
\(332\) 1915.15 0.316589
\(333\) 657.863 0.108260
\(334\) 3088.36 0.505950
\(335\) −326.950 −0.0533230
\(336\) 6358.28 1.03236
\(337\) 2314.88 0.374183 0.187092 0.982342i \(-0.440094\pi\)
0.187092 + 0.982342i \(0.440094\pi\)
\(338\) −6167.56 −0.992518
\(339\) 7589.66 1.21597
\(340\) −4320.66 −0.689179
\(341\) −2356.39 −0.374210
\(342\) 1050.19 0.166046
\(343\) 9605.41 1.51208
\(344\) −4416.77 −0.692256
\(345\) 423.160 0.0660353
\(346\) −19.5880 −0.00304352
\(347\) 3884.46 0.600947 0.300473 0.953790i \(-0.402855\pi\)
0.300473 + 0.953790i \(0.402855\pi\)
\(348\) 1178.52 0.181538
\(349\) −472.017 −0.0723969 −0.0361984 0.999345i \(-0.511525\pi\)
−0.0361984 + 0.999345i \(0.511525\pi\)
\(350\) −1108.14 −0.169236
\(351\) −9842.47 −1.49673
\(352\) 2028.55 0.307165
\(353\) −6866.16 −1.03527 −0.517633 0.855603i \(-0.673187\pi\)
−0.517633 + 0.855603i \(0.673187\pi\)
\(354\) −500.477 −0.0751414
\(355\) −7909.07 −1.18245
\(356\) −864.268 −0.128669
\(357\) 14705.0 2.18004
\(358\) 2802.48 0.413731
\(359\) 8895.93 1.30782 0.653912 0.756570i \(-0.273127\pi\)
0.653912 + 0.756570i \(0.273127\pi\)
\(360\) 9669.19 1.41559
\(361\) 361.000 0.0526316
\(362\) 2363.52 0.343159
\(363\) 1000.81 0.144707
\(364\) 16164.9 2.32766
\(365\) −11614.0 −1.66549
\(366\) 8959.46 1.27956
\(367\) −4026.00 −0.572630 −0.286315 0.958136i \(-0.592430\pi\)
−0.286315 + 0.958136i \(0.592430\pi\)
\(368\) 101.538 0.0143833
\(369\) 9893.45 1.39575
\(370\) −260.871 −0.0366541
\(371\) 21266.6 2.97603
\(372\) −11018.1 −1.53565
\(373\) 3970.48 0.551163 0.275581 0.961278i \(-0.411130\pi\)
0.275581 + 0.961278i \(0.411130\pi\)
\(374\) 829.131 0.114635
\(375\) −10036.6 −1.38211
\(376\) −4133.53 −0.566942
\(377\) 1891.94 0.258462
\(378\) −5008.76 −0.681542
\(379\) 9080.19 1.23065 0.615327 0.788272i \(-0.289024\pi\)
0.615327 + 0.788272i \(0.289024\pi\)
\(380\) 1453.66 0.196240
\(381\) 1818.84 0.244572
\(382\) −678.878 −0.0909278
\(383\) 224.191 0.0299102 0.0149551 0.999888i \(-0.495239\pi\)
0.0149551 + 0.999888i \(0.495239\pi\)
\(384\) 11641.7 1.54711
\(385\) −4260.65 −0.564008
\(386\) −2916.40 −0.384562
\(387\) −9637.90 −1.26595
\(388\) −9516.23 −1.24514
\(389\) −2340.12 −0.305009 −0.152505 0.988303i \(-0.548734\pi\)
−0.152505 + 0.988303i \(0.548734\pi\)
\(390\) 11215.1 1.45615
\(391\) 234.832 0.0303733
\(392\) 12299.6 1.58476
\(393\) −21565.7 −2.76806
\(394\) −719.031 −0.0919397
\(395\) 14922.4 1.90083
\(396\) 2832.71 0.359468
\(397\) −9516.76 −1.20310 −0.601552 0.798833i \(-0.705451\pi\)
−0.601552 + 0.798833i \(0.705451\pi\)
\(398\) −1687.05 −0.212472
\(399\) −4947.43 −0.620755
\(400\) 643.957 0.0804947
\(401\) −8861.82 −1.10359 −0.551793 0.833981i \(-0.686056\pi\)
−0.551793 + 0.833981i \(0.686056\pi\)
\(402\) 293.369 0.0363978
\(403\) −17688.0 −2.18636
\(404\) 8584.63 1.05718
\(405\) −1626.35 −0.199541
\(406\) 962.798 0.117692
\(407\) −174.745 −0.0212821
\(408\) 8864.42 1.07562
\(409\) 11128.2 1.34537 0.672684 0.739930i \(-0.265141\pi\)
0.672684 + 0.739930i \(0.265141\pi\)
\(410\) −3923.18 −0.472566
\(411\) 6780.15 0.813723
\(412\) 11996.2 1.43449
\(413\) 1427.21 0.170045
\(414\) −229.842 −0.0272854
\(415\) −3789.12 −0.448195
\(416\) 15227.1 1.79464
\(417\) −4142.03 −0.486418
\(418\) −278.956 −0.0326416
\(419\) 12444.5 1.45096 0.725481 0.688242i \(-0.241617\pi\)
0.725481 + 0.688242i \(0.241617\pi\)
\(420\) −19922.1 −2.31453
\(421\) −4029.16 −0.466435 −0.233217 0.972425i \(-0.574925\pi\)
−0.233217 + 0.972425i \(0.574925\pi\)
\(422\) −6434.46 −0.742239
\(423\) −9019.84 −1.03678
\(424\) 12819.8 1.46836
\(425\) 1489.31 0.169981
\(426\) 7096.72 0.807130
\(427\) −25549.8 −2.89565
\(428\) 7825.22 0.883753
\(429\) 7512.46 0.845466
\(430\) 3821.84 0.428618
\(431\) 9642.70 1.07766 0.538831 0.842414i \(-0.318866\pi\)
0.538831 + 0.842414i \(0.318866\pi\)
\(432\) 2910.67 0.324166
\(433\) −14351.1 −1.59277 −0.796383 0.604793i \(-0.793256\pi\)
−0.796383 + 0.604793i \(0.793256\pi\)
\(434\) −9001.30 −0.995567
\(435\) −2331.70 −0.257003
\(436\) 1690.89 0.185732
\(437\) −79.0079 −0.00864865
\(438\) 10421.1 1.13685
\(439\) 6146.97 0.668288 0.334144 0.942522i \(-0.391553\pi\)
0.334144 + 0.942522i \(0.391553\pi\)
\(440\) −2568.39 −0.278279
\(441\) 26839.3 2.89810
\(442\) 6223.79 0.669763
\(443\) 16627.2 1.78325 0.891626 0.452772i \(-0.149565\pi\)
0.891626 + 0.452772i \(0.149565\pi\)
\(444\) −817.081 −0.0873355
\(445\) 1709.95 0.182156
\(446\) −3284.57 −0.348719
\(447\) −18942.0 −2.00431
\(448\) 1599.11 0.168641
\(449\) −10601.5 −1.11428 −0.557142 0.830417i \(-0.688102\pi\)
−0.557142 + 0.830417i \(0.688102\pi\)
\(450\) −1457.66 −0.152700
\(451\) −2627.95 −0.274380
\(452\) −5706.16 −0.593795
\(453\) 1383.66 0.143510
\(454\) −1154.67 −0.119364
\(455\) −31982.2 −3.29527
\(456\) −2982.38 −0.306278
\(457\) −3753.20 −0.384174 −0.192087 0.981378i \(-0.561526\pi\)
−0.192087 + 0.981378i \(0.561526\pi\)
\(458\) −2086.68 −0.212891
\(459\) 6731.63 0.684544
\(460\) −318.146 −0.0322471
\(461\) −11783.3 −1.19046 −0.595231 0.803554i \(-0.702940\pi\)
−0.595231 + 0.803554i \(0.702940\pi\)
\(462\) 3823.04 0.384987
\(463\) 5188.50 0.520800 0.260400 0.965501i \(-0.416146\pi\)
0.260400 + 0.965501i \(0.416146\pi\)
\(464\) −559.497 −0.0559784
\(465\) 21799.3 2.17402
\(466\) 8643.13 0.859196
\(467\) 13786.2 1.36605 0.683027 0.730393i \(-0.260663\pi\)
0.683027 + 0.730393i \(0.260663\pi\)
\(468\) 21263.5 2.10022
\(469\) −836.604 −0.0823684
\(470\) 3576.75 0.351028
\(471\) 19980.8 1.95471
\(472\) 860.346 0.0838997
\(473\) 2560.07 0.248863
\(474\) −13389.7 −1.29749
\(475\) −501.068 −0.0484013
\(476\) −11055.8 −1.06458
\(477\) 27974.4 2.68524
\(478\) −1673.26 −0.160111
\(479\) 17797.6 1.69769 0.848845 0.528641i \(-0.177298\pi\)
0.848845 + 0.528641i \(0.177298\pi\)
\(480\) −18766.4 −1.78451
\(481\) −1311.71 −0.124342
\(482\) −8306.33 −0.784944
\(483\) 1082.79 0.102005
\(484\) −752.441 −0.0706650
\(485\) 18827.8 1.76274
\(486\) 5755.01 0.537145
\(487\) 13447.3 1.25125 0.625623 0.780126i \(-0.284845\pi\)
0.625623 + 0.780126i \(0.284845\pi\)
\(488\) −15401.8 −1.42870
\(489\) 16122.7 1.49099
\(490\) −10642.9 −0.981221
\(491\) −10995.7 −1.01065 −0.505324 0.862929i \(-0.668627\pi\)
−0.505324 + 0.862929i \(0.668627\pi\)
\(492\) −12287.9 −1.12598
\(493\) −1293.97 −0.118210
\(494\) −2093.96 −0.190712
\(495\) −5604.52 −0.508898
\(496\) 5230.80 0.473528
\(497\) −20237.8 −1.82654
\(498\) 3399.94 0.305934
\(499\) 10057.1 0.902241 0.451121 0.892463i \(-0.351024\pi\)
0.451121 + 0.892463i \(0.351024\pi\)
\(500\) 7545.88 0.674924
\(501\) −19138.3 −1.70666
\(502\) 7854.42 0.698326
\(503\) 4459.44 0.395302 0.197651 0.980272i \(-0.436669\pi\)
0.197651 + 0.980272i \(0.436669\pi\)
\(504\) 24741.6 2.18667
\(505\) −16984.7 −1.49665
\(506\) 61.0520 0.00536382
\(507\) 38219.8 3.34793
\(508\) −1367.46 −0.119432
\(509\) 17264.3 1.50339 0.751696 0.659510i \(-0.229236\pi\)
0.751696 + 0.659510i \(0.229236\pi\)
\(510\) −7670.41 −0.665983
\(511\) −29717.9 −2.57269
\(512\) −8210.26 −0.708683
\(513\) −2264.82 −0.194920
\(514\) −2894.48 −0.248385
\(515\) −23734.5 −2.03081
\(516\) 11970.5 1.02126
\(517\) 2395.90 0.203813
\(518\) −667.519 −0.0566199
\(519\) 121.385 0.0102663
\(520\) −19279.3 −1.62587
\(521\) −20504.6 −1.72423 −0.862115 0.506713i \(-0.830861\pi\)
−0.862115 + 0.506713i \(0.830861\pi\)
\(522\) 1266.48 0.106192
\(523\) −13064.2 −1.09227 −0.546135 0.837697i \(-0.683901\pi\)
−0.546135 + 0.837697i \(0.683901\pi\)
\(524\) 16213.8 1.35173
\(525\) 6867.04 0.570861
\(526\) −2863.00 −0.237325
\(527\) 12097.5 0.999951
\(528\) −2221.63 −0.183114
\(529\) −12149.7 −0.998579
\(530\) −11093.0 −0.909153
\(531\) 1877.38 0.153430
\(532\) 3719.65 0.303134
\(533\) −19726.5 −1.60309
\(534\) −1534.32 −0.124338
\(535\) −15482.2 −1.25113
\(536\) −504.317 −0.0406403
\(537\) −17366.7 −1.39558
\(538\) 2233.97 0.179021
\(539\) −7129.20 −0.569715
\(540\) −9119.89 −0.726774
\(541\) 19870.7 1.57913 0.789564 0.613669i \(-0.210307\pi\)
0.789564 + 0.613669i \(0.210307\pi\)
\(542\) −4541.73 −0.359934
\(543\) −14646.5 −1.15753
\(544\) −10414.4 −0.820795
\(545\) −3345.43 −0.262940
\(546\) 28697.2 2.24932
\(547\) 18949.8 1.48123 0.740615 0.671929i \(-0.234534\pi\)
0.740615 + 0.671929i \(0.234534\pi\)
\(548\) −5097.55 −0.397366
\(549\) −33608.5 −2.61271
\(550\) 387.192 0.0300180
\(551\) 435.349 0.0336597
\(552\) 652.720 0.0503290
\(553\) 38183.6 2.93623
\(554\) 2841.33 0.217900
\(555\) 1616.59 0.123641
\(556\) 3114.12 0.237533
\(557\) −5171.91 −0.393431 −0.196715 0.980461i \(-0.563027\pi\)
−0.196715 + 0.980461i \(0.563027\pi\)
\(558\) −11840.4 −0.898289
\(559\) 19216.9 1.45401
\(560\) 9457.95 0.713699
\(561\) −5138.05 −0.386682
\(562\) 726.904 0.0545597
\(563\) 15002.5 1.12306 0.561529 0.827457i \(-0.310213\pi\)
0.561529 + 0.827457i \(0.310213\pi\)
\(564\) 11202.8 0.836392
\(565\) 11289.6 0.840634
\(566\) 4637.30 0.344382
\(567\) −4161.53 −0.308233
\(568\) −12199.6 −0.901207
\(569\) −10119.4 −0.745567 −0.372783 0.927918i \(-0.621597\pi\)
−0.372783 + 0.927918i \(0.621597\pi\)
\(570\) 2580.67 0.189635
\(571\) 9281.92 0.680273 0.340137 0.940376i \(-0.389527\pi\)
0.340137 + 0.940376i \(0.389527\pi\)
\(572\) −5648.12 −0.412867
\(573\) 4206.94 0.306715
\(574\) −10038.7 −0.729975
\(575\) 109.663 0.00795351
\(576\) 2103.49 0.152163
\(577\) 7829.03 0.564865 0.282432 0.959287i \(-0.408859\pi\)
0.282432 + 0.959287i \(0.408859\pi\)
\(578\) 2300.80 0.165572
\(579\) 18072.7 1.29719
\(580\) 1753.05 0.125502
\(581\) −9695.64 −0.692329
\(582\) −16894.0 −1.20323
\(583\) −7430.72 −0.527871
\(584\) −17914.4 −1.26936
\(585\) −42069.7 −2.97328
\(586\) −3200.30 −0.225603
\(587\) −384.079 −0.0270062 −0.0135031 0.999909i \(-0.504298\pi\)
−0.0135031 + 0.999909i \(0.504298\pi\)
\(588\) −33335.0 −2.33795
\(589\) −4070.13 −0.284731
\(590\) −744.460 −0.0519474
\(591\) 4455.77 0.310128
\(592\) 387.906 0.0269305
\(593\) 345.333 0.0239142 0.0119571 0.999929i \(-0.496194\pi\)
0.0119571 + 0.999929i \(0.496194\pi\)
\(594\) 1750.10 0.120888
\(595\) 21873.8 1.50712
\(596\) 14241.2 0.978765
\(597\) 10454.5 0.716705
\(598\) 458.281 0.0313386
\(599\) −19074.7 −1.30112 −0.650560 0.759455i \(-0.725466\pi\)
−0.650560 + 0.759455i \(0.725466\pi\)
\(600\) 4139.55 0.281661
\(601\) 635.475 0.0431308 0.0215654 0.999767i \(-0.493135\pi\)
0.0215654 + 0.999767i \(0.493135\pi\)
\(602\) 9779.36 0.662088
\(603\) −1100.48 −0.0743200
\(604\) −1040.28 −0.0700804
\(605\) 1488.70 0.100040
\(606\) 15240.2 1.02160
\(607\) 13556.6 0.906500 0.453250 0.891383i \(-0.350264\pi\)
0.453250 + 0.891383i \(0.350264\pi\)
\(608\) 3503.86 0.233717
\(609\) −5966.37 −0.396994
\(610\) 13327.2 0.884596
\(611\) 17984.6 1.19080
\(612\) −14542.9 −0.960557
\(613\) −1098.47 −0.0723762 −0.0361881 0.999345i \(-0.511522\pi\)
−0.0361881 + 0.999345i \(0.511522\pi\)
\(614\) 10072.8 0.662064
\(615\) 24311.6 1.59404
\(616\) −6572.01 −0.429860
\(617\) −14728.1 −0.960993 −0.480496 0.876997i \(-0.659543\pi\)
−0.480496 + 0.876997i \(0.659543\pi\)
\(618\) 21296.7 1.38621
\(619\) 6365.05 0.413300 0.206650 0.978415i \(-0.433744\pi\)
0.206650 + 0.978415i \(0.433744\pi\)
\(620\) −16389.4 −1.06164
\(621\) 495.675 0.0320302
\(622\) 2902.21 0.187087
\(623\) 4375.44 0.281378
\(624\) −16676.4 −1.06986
\(625\) −18226.0 −1.16647
\(626\) −1005.17 −0.0641770
\(627\) 1728.67 0.110106
\(628\) −15022.3 −0.954545
\(629\) 897.125 0.0568692
\(630\) −21409.0 −1.35390
\(631\) 14354.9 0.905641 0.452820 0.891602i \(-0.350418\pi\)
0.452820 + 0.891602i \(0.350418\pi\)
\(632\) 23017.7 1.44872
\(633\) 39873.8 2.50370
\(634\) −12455.2 −0.780220
\(635\) 2705.53 0.169080
\(636\) −34744.8 −2.16623
\(637\) −53514.6 −3.32861
\(638\) −336.409 −0.0208755
\(639\) −26621.1 −1.64806
\(640\) 17317.1 1.06956
\(641\) −7077.48 −0.436106 −0.218053 0.975937i \(-0.569970\pi\)
−0.218053 + 0.975937i \(0.569970\pi\)
\(642\) 13892.0 0.854008
\(643\) −10741.8 −0.658812 −0.329406 0.944188i \(-0.606848\pi\)
−0.329406 + 0.944188i \(0.606848\pi\)
\(644\) −814.076 −0.0498123
\(645\) −23683.6 −1.44580
\(646\) 1432.14 0.0872239
\(647\) −6658.44 −0.404591 −0.202295 0.979325i \(-0.564840\pi\)
−0.202295 + 0.979325i \(0.564840\pi\)
\(648\) −2508.63 −0.152081
\(649\) −498.679 −0.0301616
\(650\) 2906.42 0.175383
\(651\) 55780.2 3.35822
\(652\) −12121.6 −0.728098
\(653\) 31954.0 1.91494 0.957472 0.288527i \(-0.0931655\pi\)
0.957472 + 0.288527i \(0.0931655\pi\)
\(654\) 3001.82 0.179481
\(655\) −32079.0 −1.91364
\(656\) 5833.63 0.347203
\(657\) −39091.4 −2.32131
\(658\) 9152.23 0.542236
\(659\) −5835.87 −0.344967 −0.172484 0.985012i \(-0.555179\pi\)
−0.172484 + 0.985012i \(0.555179\pi\)
\(660\) 6960.94 0.410537
\(661\) −1447.02 −0.0851478 −0.0425739 0.999093i \(-0.513556\pi\)
−0.0425739 + 0.999093i \(0.513556\pi\)
\(662\) 7677.54 0.450749
\(663\) −38568.2 −2.25922
\(664\) −5844.68 −0.341593
\(665\) −7359.31 −0.429146
\(666\) −878.063 −0.0510875
\(667\) −95.2799 −0.00553111
\(668\) 14388.8 0.833412
\(669\) 20354.2 1.17629
\(670\) 436.387 0.0251628
\(671\) 8927.28 0.513612
\(672\) −48019.6 −2.75654
\(673\) 23138.7 1.32531 0.662654 0.748925i \(-0.269430\pi\)
0.662654 + 0.748925i \(0.269430\pi\)
\(674\) −3089.72 −0.176575
\(675\) 3143.57 0.179253
\(676\) −28735.0 −1.63490
\(677\) 18424.6 1.04596 0.522980 0.852345i \(-0.324820\pi\)
0.522980 + 0.852345i \(0.324820\pi\)
\(678\) −10130.1 −0.573810
\(679\) 48176.9 2.72291
\(680\) 13185.8 0.743609
\(681\) 7155.38 0.402635
\(682\) 3145.12 0.176588
\(683\) 23120.8 1.29530 0.647651 0.761937i \(-0.275751\pi\)
0.647651 + 0.761937i \(0.275751\pi\)
\(684\) 4892.87 0.273514
\(685\) 10085.5 0.562550
\(686\) −12820.5 −0.713542
\(687\) 12931.0 0.718118
\(688\) −5682.94 −0.314913
\(689\) −55777.9 −3.08413
\(690\) −564.801 −0.0311617
\(691\) 34555.5 1.90239 0.951197 0.308586i \(-0.0998556\pi\)
0.951197 + 0.308586i \(0.0998556\pi\)
\(692\) −91.2614 −0.00501335
\(693\) −14340.9 −0.786097
\(694\) −5184.66 −0.283584
\(695\) −6161.28 −0.336274
\(696\) −3596.61 −0.195875
\(697\) 13491.7 0.733190
\(698\) 630.011 0.0341637
\(699\) −53560.7 −2.89821
\(700\) −5162.87 −0.278769
\(701\) 2348.34 0.126527 0.0632635 0.997997i \(-0.479849\pi\)
0.0632635 + 0.997997i \(0.479849\pi\)
\(702\) 13136.9 0.706299
\(703\) −301.833 −0.0161932
\(704\) −558.742 −0.0299125
\(705\) −22164.8 −1.18408
\(706\) 9164.40 0.488536
\(707\) −43460.5 −2.31188
\(708\) −2331.74 −0.123774
\(709\) 23636.5 1.25203 0.626013 0.779813i \(-0.284686\pi\)
0.626013 + 0.779813i \(0.284686\pi\)
\(710\) 10556.4 0.557992
\(711\) 50227.2 2.64932
\(712\) 2637.58 0.138831
\(713\) 890.782 0.0467883
\(714\) −19627.1 −1.02875
\(715\) 11174.8 0.584495
\(716\) 13056.9 0.681506
\(717\) 10369.0 0.540082
\(718\) −11873.6 −0.617156
\(719\) 26804.1 1.39030 0.695149 0.718865i \(-0.255338\pi\)
0.695149 + 0.718865i \(0.255338\pi\)
\(720\) 12441.1 0.643962
\(721\) −60732.1 −3.13701
\(722\) −481.834 −0.0248366
\(723\) 51473.5 2.64775
\(724\) 11011.7 0.565259
\(725\) −604.265 −0.0309543
\(726\) −1335.80 −0.0682866
\(727\) 5826.15 0.297221 0.148611 0.988896i \(-0.452520\pi\)
0.148611 + 0.988896i \(0.452520\pi\)
\(728\) −49332.1 −2.51150
\(729\) −32094.2 −1.63055
\(730\) 15501.4 0.785935
\(731\) −13143.2 −0.665004
\(732\) 41742.5 2.10772
\(733\) −9322.98 −0.469784 −0.234892 0.972021i \(-0.575474\pi\)
−0.234892 + 0.972021i \(0.575474\pi\)
\(734\) 5373.58 0.270221
\(735\) 65953.2 3.30982
\(736\) −766.849 −0.0384055
\(737\) 292.315 0.0146100
\(738\) −13205.0 −0.658648
\(739\) −35683.3 −1.77623 −0.888113 0.459626i \(-0.847984\pi\)
−0.888113 + 0.459626i \(0.847984\pi\)
\(740\) −1215.41 −0.0603775
\(741\) 12976.1 0.643303
\(742\) −28385.0 −1.40437
\(743\) 17598.6 0.868948 0.434474 0.900684i \(-0.356934\pi\)
0.434474 + 0.900684i \(0.356934\pi\)
\(744\) 33625.1 1.65693
\(745\) −28176.3 −1.38564
\(746\) −5299.48 −0.260091
\(747\) −12753.8 −0.624680
\(748\) 3862.96 0.188829
\(749\) −39615.9 −1.93262
\(750\) 13396.1 0.652208
\(751\) 12295.0 0.597404 0.298702 0.954346i \(-0.403446\pi\)
0.298702 + 0.954346i \(0.403446\pi\)
\(752\) −5318.51 −0.257907
\(753\) −48673.1 −2.35557
\(754\) −2525.22 −0.121967
\(755\) 2058.20 0.0992127
\(756\) −23336.1 −1.12265
\(757\) 3925.94 0.188495 0.0942475 0.995549i \(-0.469955\pi\)
0.0942475 + 0.995549i \(0.469955\pi\)
\(758\) −12119.5 −0.580739
\(759\) −378.334 −0.0180931
\(760\) −4436.30 −0.211739
\(761\) 34351.8 1.63634 0.818169 0.574978i \(-0.194989\pi\)
0.818169 + 0.574978i \(0.194989\pi\)
\(762\) −2427.64 −0.115412
\(763\) −8560.32 −0.406166
\(764\) −3162.92 −0.149778
\(765\) 28773.1 1.35986
\(766\) −299.232 −0.0141145
\(767\) −3743.28 −0.176222
\(768\) −18899.5 −0.887989
\(769\) −452.819 −0.0212342 −0.0106171 0.999944i \(-0.503380\pi\)
−0.0106171 + 0.999944i \(0.503380\pi\)
\(770\) 5686.78 0.266152
\(771\) 17936.8 0.837845
\(772\) −13587.6 −0.633459
\(773\) −35034.0 −1.63012 −0.815062 0.579373i \(-0.803297\pi\)
−0.815062 + 0.579373i \(0.803297\pi\)
\(774\) 12863.9 0.597395
\(775\) 5649.34 0.261846
\(776\) 29041.7 1.34348
\(777\) 4136.55 0.190988
\(778\) 3123.40 0.143932
\(779\) −4539.19 −0.208772
\(780\) 52251.6 2.39860
\(781\) 7071.23 0.323980
\(782\) −313.435 −0.0143330
\(783\) −2731.26 −0.124658
\(784\) 15825.7 0.720921
\(785\) 29721.5 1.35135
\(786\) 28784.2 1.30623
\(787\) 9289.03 0.420734 0.210367 0.977622i \(-0.432534\pi\)
0.210367 + 0.977622i \(0.432534\pi\)
\(788\) −3350.00 −0.151445
\(789\) 17741.7 0.800536
\(790\) −19917.3 −0.896992
\(791\) 28888.0 1.29853
\(792\) −8644.90 −0.387858
\(793\) 67011.7 3.00083
\(794\) 12702.2 0.567739
\(795\) 68742.6 3.06673
\(796\) −7860.02 −0.349989
\(797\) 17541.7 0.779623 0.389812 0.920895i \(-0.372540\pi\)
0.389812 + 0.920895i \(0.372540\pi\)
\(798\) 6603.43 0.292931
\(799\) −12300.3 −0.544623
\(800\) −4863.36 −0.214932
\(801\) 5755.51 0.253884
\(802\) 11828.1 0.520777
\(803\) 10383.7 0.456328
\(804\) 1366.82 0.0599553
\(805\) 1610.65 0.0705191
\(806\) 23608.5 1.03173
\(807\) −13843.7 −0.603867
\(808\) −26198.7 −1.14068
\(809\) 10022.9 0.435583 0.217792 0.975995i \(-0.430115\pi\)
0.217792 + 0.975995i \(0.430115\pi\)
\(810\) 2170.73 0.0941625
\(811\) −25395.3 −1.09957 −0.549784 0.835307i \(-0.685290\pi\)
−0.549784 + 0.835307i \(0.685290\pi\)
\(812\) 4485.72 0.193864
\(813\) 28144.7 1.21412
\(814\) 233.236 0.0100429
\(815\) 23982.6 1.03077
\(816\) 11405.6 0.489310
\(817\) 4421.94 0.189356
\(818\) −14853.1 −0.634873
\(819\) −107648. −4.59285
\(820\) −18278.3 −0.778421
\(821\) −14533.5 −0.617809 −0.308904 0.951093i \(-0.599962\pi\)
−0.308904 + 0.951093i \(0.599962\pi\)
\(822\) −9049.60 −0.383992
\(823\) −20129.1 −0.852561 −0.426281 0.904591i \(-0.640176\pi\)
−0.426281 + 0.904591i \(0.640176\pi\)
\(824\) −36610.2 −1.54779
\(825\) −2399.39 −0.101256
\(826\) −1904.93 −0.0802434
\(827\) −9726.57 −0.408979 −0.204490 0.978869i \(-0.565553\pi\)
−0.204490 + 0.978869i \(0.565553\pi\)
\(828\) −1070.85 −0.0449450
\(829\) 18762.2 0.786054 0.393027 0.919527i \(-0.371428\pi\)
0.393027 + 0.919527i \(0.371428\pi\)
\(830\) 5057.42 0.211501
\(831\) −17607.5 −0.735014
\(832\) −4194.14 −0.174766
\(833\) 36600.6 1.52237
\(834\) 5528.45 0.229538
\(835\) −28468.2 −1.17986
\(836\) −1299.67 −0.0537680
\(837\) 25534.9 1.05450
\(838\) −16609.9 −0.684702
\(839\) −5250.80 −0.216064 −0.108032 0.994147i \(-0.534455\pi\)
−0.108032 + 0.994147i \(0.534455\pi\)
\(840\) 60798.6 2.49732
\(841\) −23864.0 −0.978473
\(842\) 5377.79 0.220108
\(843\) −4504.55 −0.184039
\(844\) −29978.5 −1.22263
\(845\) 56852.0 2.31452
\(846\) 12039.0 0.489253
\(847\) 3809.31 0.154533
\(848\) 16495.0 0.667971
\(849\) −28736.9 −1.16166
\(850\) −1987.81 −0.0802132
\(851\) 66.0587 0.00266094
\(852\) 33064.0 1.32952
\(853\) −10044.8 −0.403199 −0.201599 0.979468i \(-0.564614\pi\)
−0.201599 + 0.979468i \(0.564614\pi\)
\(854\) 34101.8 1.36644
\(855\) −9680.53 −0.387213
\(856\) −23881.1 −0.953550
\(857\) 18120.1 0.722251 0.361126 0.932517i \(-0.382393\pi\)
0.361126 + 0.932517i \(0.382393\pi\)
\(858\) −10027.0 −0.398971
\(859\) 10220.5 0.405960 0.202980 0.979183i \(-0.434937\pi\)
0.202980 + 0.979183i \(0.434937\pi\)
\(860\) 17806.1 0.706028
\(861\) 62208.7 2.46233
\(862\) −12870.3 −0.508543
\(863\) −29222.2 −1.15265 −0.576324 0.817221i \(-0.695513\pi\)
−0.576324 + 0.817221i \(0.695513\pi\)
\(864\) −21982.3 −0.865569
\(865\) 180.560 0.00709739
\(866\) 19154.6 0.751618
\(867\) −14257.8 −0.558503
\(868\) −41937.5 −1.63992
\(869\) −13341.6 −0.520810
\(870\) 3112.16 0.121278
\(871\) 2194.24 0.0853603
\(872\) −5160.29 −0.200401
\(873\) 63372.5 2.45685
\(874\) 105.453 0.00408126
\(875\) −38201.8 −1.47595
\(876\) 48552.3 1.87264
\(877\) 1889.82 0.0727649 0.0363824 0.999338i \(-0.488417\pi\)
0.0363824 + 0.999338i \(0.488417\pi\)
\(878\) −8204.48 −0.315362
\(879\) 19832.0 0.760996
\(880\) −3304.68 −0.126592
\(881\) 5440.27 0.208045 0.104022 0.994575i \(-0.466829\pi\)
0.104022 + 0.994575i \(0.466829\pi\)
\(882\) −35822.9 −1.36760
\(883\) −16159.0 −0.615850 −0.307925 0.951411i \(-0.599635\pi\)
−0.307925 + 0.951411i \(0.599635\pi\)
\(884\) 28996.9 1.10325
\(885\) 4613.35 0.175227
\(886\) −22192.6 −0.841507
\(887\) 47494.4 1.79786 0.898932 0.438087i \(-0.144344\pi\)
0.898932 + 0.438087i \(0.144344\pi\)
\(888\) 2493.58 0.0942330
\(889\) 6922.92 0.261178
\(890\) −2282.31 −0.0859586
\(891\) 1454.07 0.0546725
\(892\) −15303.0 −0.574418
\(893\) 4138.37 0.155079
\(894\) 25282.3 0.945823
\(895\) −25833.0 −0.964807
\(896\) 44311.1 1.65215
\(897\) −2839.92 −0.105710
\(898\) 14150.0 0.525825
\(899\) −4908.38 −0.182095
\(900\) −6791.31 −0.251530
\(901\) 38148.6 1.41056
\(902\) 3507.58 0.129479
\(903\) −60601.8 −2.23334
\(904\) 17414.1 0.640692
\(905\) −21786.7 −0.800236
\(906\) −1846.80 −0.0677217
\(907\) 9806.28 0.358999 0.179499 0.983758i \(-0.442552\pi\)
0.179499 + 0.983758i \(0.442552\pi\)
\(908\) −5379.66 −0.196619
\(909\) −57168.6 −2.08599
\(910\) 42687.2 1.55502
\(911\) 25239.2 0.917906 0.458953 0.888461i \(-0.348225\pi\)
0.458953 + 0.888461i \(0.348225\pi\)
\(912\) −3837.36 −0.139329
\(913\) 3387.73 0.122801
\(914\) 5009.48 0.181290
\(915\) −82587.5 −2.98389
\(916\) −9721.94 −0.350679
\(917\) −82084.1 −2.95601
\(918\) −8984.84 −0.323033
\(919\) 15752.4 0.565423 0.282712 0.959205i \(-0.408766\pi\)
0.282712 + 0.959205i \(0.408766\pi\)
\(920\) 970.922 0.0347939
\(921\) −62420.5 −2.23325
\(922\) 15727.4 0.561773
\(923\) 53079.5 1.89288
\(924\) 17811.7 0.634158
\(925\) 418.944 0.0148917
\(926\) −6925.20 −0.245763
\(927\) −79887.8 −2.83048
\(928\) 4225.49 0.149470
\(929\) 30241.1 1.06801 0.534004 0.845482i \(-0.320687\pi\)
0.534004 + 0.845482i \(0.320687\pi\)
\(930\) −29095.9 −1.02591
\(931\) −12314.1 −0.433488
\(932\) 40268.7 1.41529
\(933\) −17984.7 −0.631075
\(934\) −18400.7 −0.644634
\(935\) −7642.86 −0.267324
\(936\) −64892.1 −2.26609
\(937\) 13939.9 0.486017 0.243008 0.970024i \(-0.421866\pi\)
0.243008 + 0.970024i \(0.421866\pi\)
\(938\) 1116.63 0.0388692
\(939\) 6228.96 0.216480
\(940\) 16664.3 0.578222
\(941\) 1933.94 0.0669976 0.0334988 0.999439i \(-0.489335\pi\)
0.0334988 + 0.999439i \(0.489335\pi\)
\(942\) −26668.8 −0.922417
\(943\) 993.441 0.0343064
\(944\) 1106.99 0.0381667
\(945\) 46170.4 1.58934
\(946\) −3416.98 −0.117437
\(947\) −41240.8 −1.41515 −0.707575 0.706639i \(-0.750211\pi\)
−0.707575 + 0.706639i \(0.750211\pi\)
\(948\) −62383.4 −2.13725
\(949\) 77943.9 2.66614
\(950\) 668.786 0.0228403
\(951\) 77183.7 2.63181
\(952\) 33740.0 1.14866
\(953\) −40558.3 −1.37861 −0.689304 0.724473i \(-0.742083\pi\)
−0.689304 + 0.724473i \(0.742083\pi\)
\(954\) −37338.0 −1.26715
\(955\) 6257.84 0.212041
\(956\) −7795.79 −0.263738
\(957\) 2084.69 0.0704164
\(958\) −23754.8 −0.801131
\(959\) 25806.8 0.868974
\(960\) 5169.00 0.173780
\(961\) 16098.0 0.540365
\(962\) 1750.76 0.0586765
\(963\) −52111.3 −1.74378
\(964\) −38699.6 −1.29298
\(965\) 26883.1 0.896786
\(966\) −1445.22 −0.0481357
\(967\) 40390.6 1.34320 0.671599 0.740915i \(-0.265608\pi\)
0.671599 + 0.740915i \(0.265608\pi\)
\(968\) 2296.31 0.0762460
\(969\) −8874.81 −0.294221
\(970\) −25129.9 −0.831827
\(971\) −26912.8 −0.889469 −0.444735 0.895662i \(-0.646702\pi\)
−0.444735 + 0.895662i \(0.646702\pi\)
\(972\) 26812.8 0.884797
\(973\) −15765.5 −0.519445
\(974\) −17948.4 −0.590456
\(975\) −18010.8 −0.591597
\(976\) −19817.1 −0.649928
\(977\) −1343.43 −0.0439921 −0.0219960 0.999758i \(-0.507002\pi\)
−0.0219960 + 0.999758i \(0.507002\pi\)
\(978\) −21519.3 −0.703592
\(979\) −1528.81 −0.0499091
\(980\) −49585.9 −1.61629
\(981\) −11260.4 −0.366479
\(982\) 14676.2 0.476920
\(983\) 1898.54 0.0616013 0.0308007 0.999526i \(-0.490194\pi\)
0.0308007 + 0.999526i \(0.490194\pi\)
\(984\) 37500.3 1.21490
\(985\) 6627.96 0.214400
\(986\) 1727.09 0.0557827
\(987\) −56715.5 −1.82905
\(988\) −9755.85 −0.314145
\(989\) −967.780 −0.0311159
\(990\) 7480.46 0.240146
\(991\) −14623.4 −0.468747 −0.234373 0.972147i \(-0.575304\pi\)
−0.234373 + 0.972147i \(0.575304\pi\)
\(992\) −39504.5 −1.26439
\(993\) −47577.0 −1.52045
\(994\) 27011.8 0.861934
\(995\) 15551.0 0.495478
\(996\) 15840.5 0.503941
\(997\) 32748.0 1.04026 0.520130 0.854087i \(-0.325884\pi\)
0.520130 + 0.854087i \(0.325884\pi\)
\(998\) −13423.4 −0.425763
\(999\) 1893.62 0.0599714
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 209.4.a.c.1.6 13
3.2 odd 2 1881.4.a.k.1.8 13
11.10 odd 2 2299.4.a.k.1.8 13
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.4.a.c.1.6 13 1.1 even 1 trivial
1881.4.a.k.1.8 13 3.2 odd 2
2299.4.a.k.1.8 13 11.10 odd 2