L(s) = 1 | − 3-s − 7-s − 2·11-s + 6·13-s + 8·17-s + 19-s + 21-s + 8·23-s + 27-s + 8·29-s − 3·31-s + 2·33-s − 37-s − 6·39-s + 12·41-s − 22·43-s + 6·47-s − 6·49-s − 8·51-s − 12·53-s − 57-s − 4·59-s + 6·61-s + 13·67-s − 8·69-s − 20·71-s − 11·73-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.377·7-s − 0.603·11-s + 1.66·13-s + 1.94·17-s + 0.229·19-s + 0.218·21-s + 1.66·23-s + 0.192·27-s + 1.48·29-s − 0.538·31-s + 0.348·33-s − 0.164·37-s − 0.960·39-s + 1.87·41-s − 3.35·43-s + 0.875·47-s − 6/7·49-s − 1.12·51-s − 1.64·53-s − 0.132·57-s − 0.520·59-s + 0.768·61-s + 1.58·67-s − 0.963·69-s − 2.37·71-s − 1.28·73-s + ⋯ |
Λ(s)=(=(4410000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(4410000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
4410000
= 24⋅32⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
281.185 |
Root analytic conductor: |
4.09494 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 4410000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.033113201 |
L(21) |
≈ |
2.033113201 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+T+T2 |
| 5 | | 1 |
| 7 | C2 | 1+T+pT2 |
good | 11 | C22 | 1+2T−7T2+2pT3+p2T4 |
| 13 | C2 | (1−3T+pT2)2 |
| 17 | C22 | 1−8T+47T2−8pT3+p2T4 |
| 19 | C2 | (1−8T+pT2)(1+7T+pT2) |
| 23 | C22 | 1−8T+41T2−8pT3+p2T4 |
| 29 | C2 | (1−4T+pT2)2 |
| 31 | C22 | 1+3T−22T2+3pT3+p2T4 |
| 37 | C2 | (1−10T+pT2)(1+11T+pT2) |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C2 | (1+11T+pT2)2 |
| 47 | C22 | 1−6T−11T2−6pT3+p2T4 |
| 53 | C22 | 1+12T+91T2+12pT3+p2T4 |
| 59 | C22 | 1+4T−43T2+4pT3+p2T4 |
| 61 | C22 | 1−6T−25T2−6pT3+p2T4 |
| 67 | C22 | 1−13T+102T2−13pT3+p2T4 |
| 71 | C2 | (1+10T+pT2)2 |
| 73 | C22 | 1+11T+48T2+11pT3+p2T4 |
| 79 | C22 | 1−3T−70T2−3pT3+p2T4 |
| 83 | C2 | (1+2T+pT2)2 |
| 89 | C22 | 1−pT2+p2T4 |
| 97 | C2 | (1+10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.404867300453660491687727090464, −8.756491253430226388308794240206, −8.481586197286060665889451892708, −8.274031303280547287898977168784, −7.75881040428835068151252853549, −7.24994931249509686195318535508, −7.01362081111772859095173615222, −6.48508810262852846364315702894, −5.96596966402527894882673227731, −5.91976027743212472565729749444, −5.35265945924216109852996909503, −4.86976500263577129667346499165, −4.68342841456055938379128876223, −3.86458612992151212977773671285, −3.39885405141085957937069191497, −3.07471891287172468221521771786, −2.76403516598285403654098936602, −1.61882765419548335065548026140, −1.26499302594765782524353377093, −0.59146379977460636388211260175,
0.59146379977460636388211260175, 1.26499302594765782524353377093, 1.61882765419548335065548026140, 2.76403516598285403654098936602, 3.07471891287172468221521771786, 3.39885405141085957937069191497, 3.86458612992151212977773671285, 4.68342841456055938379128876223, 4.86976500263577129667346499165, 5.35265945924216109852996909503, 5.91976027743212472565729749444, 5.96596966402527894882673227731, 6.48508810262852846364315702894, 7.01362081111772859095173615222, 7.24994931249509686195318535508, 7.75881040428835068151252853549, 8.274031303280547287898977168784, 8.481586197286060665889451892708, 8.756491253430226388308794240206, 9.404867300453660491687727090464