Properties

Label 4-2100e2-1.1-c1e2-0-15
Degree $4$
Conductor $4410000$
Sign $1$
Analytic cond. $281.185$
Root an. cond. $4.09494$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s − 2·11-s + 6·13-s + 8·17-s + 19-s + 21-s + 8·23-s + 27-s + 8·29-s − 3·31-s + 2·33-s − 37-s − 6·39-s + 12·41-s − 22·43-s + 6·47-s − 6·49-s − 8·51-s − 12·53-s − 57-s − 4·59-s + 6·61-s + 13·67-s − 8·69-s − 20·71-s − 11·73-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s − 0.603·11-s + 1.66·13-s + 1.94·17-s + 0.229·19-s + 0.218·21-s + 1.66·23-s + 0.192·27-s + 1.48·29-s − 0.538·31-s + 0.348·33-s − 0.164·37-s − 0.960·39-s + 1.87·41-s − 3.35·43-s + 0.875·47-s − 6/7·49-s − 1.12·51-s − 1.64·53-s − 0.132·57-s − 0.520·59-s + 0.768·61-s + 1.58·67-s − 0.963·69-s − 2.37·71-s − 1.28·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4410000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4410000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4410000\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(281.185\)
Root analytic conductor: \(4.09494\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4410000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.033113201\)
\(L(\frac12)\) \(\approx\) \(2.033113201\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T + T^{2} \)
5 \( 1 \)
7$C_2$ \( 1 + T + p T^{2} \)
good11$C_2^2$ \( 1 + 2 T - 7 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 8 T + 47 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 8 T + 41 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 3 T - 22 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 6 T - 11 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 12 T + 91 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 4 T - 43 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 6 T - 25 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 13 T + 102 T^{2} - 13 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 11 T + 48 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 3 T - 70 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.404867300453660491687727090464, −8.756491253430226388308794240206, −8.481586197286060665889451892708, −8.274031303280547287898977168784, −7.75881040428835068151252853549, −7.24994931249509686195318535508, −7.01362081111772859095173615222, −6.48508810262852846364315702894, −5.96596966402527894882673227731, −5.91976027743212472565729749444, −5.35265945924216109852996909503, −4.86976500263577129667346499165, −4.68342841456055938379128876223, −3.86458612992151212977773671285, −3.39885405141085957937069191497, −3.07471891287172468221521771786, −2.76403516598285403654098936602, −1.61882765419548335065548026140, −1.26499302594765782524353377093, −0.59146379977460636388211260175, 0.59146379977460636388211260175, 1.26499302594765782524353377093, 1.61882765419548335065548026140, 2.76403516598285403654098936602, 3.07471891287172468221521771786, 3.39885405141085957937069191497, 3.86458612992151212977773671285, 4.68342841456055938379128876223, 4.86976500263577129667346499165, 5.35265945924216109852996909503, 5.91976027743212472565729749444, 5.96596966402527894882673227731, 6.48508810262852846364315702894, 7.01362081111772859095173615222, 7.24994931249509686195318535508, 7.75881040428835068151252853549, 8.274031303280547287898977168784, 8.481586197286060665889451892708, 8.756491253430226388308794240206, 9.404867300453660491687727090464

Graph of the $Z$-function along the critical line