Properties

Label 2100.2.q.b
Level $2100$
Weight $2$
Character orbit 2100.q
Analytic conductor $16.769$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,2,Mod(1201,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.1201");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2100.q (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.7685844245\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{3} + (3 \zeta_{6} - 2) q^{7} - \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{6} - 1) q^{3} + (3 \zeta_{6} - 2) q^{7} - \zeta_{6} q^{9} + (2 \zeta_{6} - 2) q^{11} + 3 q^{13} + ( - 8 \zeta_{6} + 8) q^{17} + \zeta_{6} q^{19} + ( - 2 \zeta_{6} - 1) q^{21} + 8 \zeta_{6} q^{23} + q^{27} + 4 q^{29} + (3 \zeta_{6} - 3) q^{31} - 2 \zeta_{6} q^{33} - \zeta_{6} q^{37} + (3 \zeta_{6} - 3) q^{39} + 6 q^{41} - 11 q^{43} + 6 \zeta_{6} q^{47} + ( - 3 \zeta_{6} - 5) q^{49} + 8 \zeta_{6} q^{51} + (12 \zeta_{6} - 12) q^{53} - q^{57} + (4 \zeta_{6} - 4) q^{59} + 6 \zeta_{6} q^{61} + ( - \zeta_{6} + 3) q^{63} + ( - 13 \zeta_{6} + 13) q^{67} - 8 q^{69} - 10 q^{71} + (11 \zeta_{6} - 11) q^{73} + ( - 4 \zeta_{6} - 2) q^{77} + 3 \zeta_{6} q^{79} + (\zeta_{6} - 1) q^{81} - 2 q^{83} + (4 \zeta_{6} - 4) q^{87} + (9 \zeta_{6} - 6) q^{91} - 3 \zeta_{6} q^{93} - 10 q^{97} + 2 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{3} - q^{7} - q^{9} - 2 q^{11} + 6 q^{13} + 8 q^{17} + q^{19} - 4 q^{21} + 8 q^{23} + 2 q^{27} + 8 q^{29} - 3 q^{31} - 2 q^{33} - q^{37} - 3 q^{39} + 12 q^{41} - 22 q^{43} + 6 q^{47} - 13 q^{49} + 8 q^{51} - 12 q^{53} - 2 q^{57} - 4 q^{59} + 6 q^{61} + 5 q^{63} + 13 q^{67} - 16 q^{69} - 20 q^{71} - 11 q^{73} - 8 q^{77} + 3 q^{79} - q^{81} - 4 q^{83} - 4 q^{87} - 3 q^{91} - 3 q^{93} - 20 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1201.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −0.500000 + 0.866025i 0 0 0 −0.500000 + 2.59808i 0 −0.500000 0.866025i 0
1801.1 0 −0.500000 0.866025i 0 0 0 −0.500000 2.59808i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.2.q.b 2
5.b even 2 1 84.2.i.a 2
5.c odd 4 2 2100.2.bc.a 4
7.c even 3 1 inner 2100.2.q.b 2
15.d odd 2 1 252.2.k.a 2
20.d odd 2 1 336.2.q.c 2
35.c odd 2 1 588.2.i.b 2
35.i odd 6 1 588.2.a.f 1
35.i odd 6 1 588.2.i.b 2
35.j even 6 1 84.2.i.a 2
35.j even 6 1 588.2.a.a 1
35.l odd 12 2 2100.2.bc.a 4
40.e odd 2 1 1344.2.q.n 2
40.f even 2 1 1344.2.q.b 2
45.h odd 6 1 2268.2.i.b 2
45.h odd 6 1 2268.2.l.g 2
45.j even 6 1 2268.2.i.g 2
45.j even 6 1 2268.2.l.b 2
60.h even 2 1 1008.2.s.c 2
105.g even 2 1 1764.2.k.j 2
105.o odd 6 1 252.2.k.a 2
105.o odd 6 1 1764.2.a.h 1
105.p even 6 1 1764.2.a.c 1
105.p even 6 1 1764.2.k.j 2
140.c even 2 1 2352.2.q.q 2
140.p odd 6 1 336.2.q.c 2
140.p odd 6 1 2352.2.a.o 1
140.s even 6 1 2352.2.a.k 1
140.s even 6 1 2352.2.q.q 2
280.ba even 6 1 9408.2.a.bx 1
280.bf even 6 1 1344.2.q.b 2
280.bf even 6 1 9408.2.a.cx 1
280.bi odd 6 1 1344.2.q.n 2
280.bi odd 6 1 9408.2.a.bi 1
280.bk odd 6 1 9408.2.a.i 1
315.r even 6 1 2268.2.l.b 2
315.v odd 6 1 2268.2.i.b 2
315.bo even 6 1 2268.2.i.g 2
315.br odd 6 1 2268.2.l.g 2
420.ba even 6 1 1008.2.s.c 2
420.ba even 6 1 7056.2.a.bs 1
420.be odd 6 1 7056.2.a.o 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.2.i.a 2 5.b even 2 1
84.2.i.a 2 35.j even 6 1
252.2.k.a 2 15.d odd 2 1
252.2.k.a 2 105.o odd 6 1
336.2.q.c 2 20.d odd 2 1
336.2.q.c 2 140.p odd 6 1
588.2.a.a 1 35.j even 6 1
588.2.a.f 1 35.i odd 6 1
588.2.i.b 2 35.c odd 2 1
588.2.i.b 2 35.i odd 6 1
1008.2.s.c 2 60.h even 2 1
1008.2.s.c 2 420.ba even 6 1
1344.2.q.b 2 40.f even 2 1
1344.2.q.b 2 280.bf even 6 1
1344.2.q.n 2 40.e odd 2 1
1344.2.q.n 2 280.bi odd 6 1
1764.2.a.c 1 105.p even 6 1
1764.2.a.h 1 105.o odd 6 1
1764.2.k.j 2 105.g even 2 1
1764.2.k.j 2 105.p even 6 1
2100.2.q.b 2 1.a even 1 1 trivial
2100.2.q.b 2 7.c even 3 1 inner
2100.2.bc.a 4 5.c odd 4 2
2100.2.bc.a 4 35.l odd 12 2
2268.2.i.b 2 45.h odd 6 1
2268.2.i.b 2 315.v odd 6 1
2268.2.i.g 2 45.j even 6 1
2268.2.i.g 2 315.bo even 6 1
2268.2.l.b 2 45.j even 6 1
2268.2.l.b 2 315.r even 6 1
2268.2.l.g 2 45.h odd 6 1
2268.2.l.g 2 315.br odd 6 1
2352.2.a.k 1 140.s even 6 1
2352.2.a.o 1 140.p odd 6 1
2352.2.q.q 2 140.c even 2 1
2352.2.q.q 2 140.s even 6 1
7056.2.a.o 1 420.be odd 6 1
7056.2.a.bs 1 420.ba even 6 1
9408.2.a.i 1 280.bk odd 6 1
9408.2.a.bi 1 280.bi odd 6 1
9408.2.a.bx 1 280.ba even 6 1
9408.2.a.cx 1 280.bf even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2100, [\chi])\):

\( T_{11}^{2} + 2T_{11} + 4 \) Copy content Toggle raw display
\( T_{13} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$13$ \( (T - 3)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$19$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$23$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$29$ \( (T - 4)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$37$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$41$ \( (T - 6)^{2} \) Copy content Toggle raw display
$43$ \( (T + 11)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$53$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$59$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$61$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$67$ \( T^{2} - 13T + 169 \) Copy content Toggle raw display
$71$ \( (T + 10)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$79$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$83$ \( (T + 2)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( (T + 10)^{2} \) Copy content Toggle raw display
show more
show less