Properties

Label 2-2100-5.4-c3-0-47
Degree 22
Conductor 21002100
Sign 0.894+0.447i-0.894 + 0.447i
Analytic cond. 123.904123.904
Root an. cond. 11.131211.1312
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3i·3-s − 7i·7-s − 9·9-s + 6.11·11-s − 15.2i·13-s − 101. i·17-s + 72.9·19-s − 21·21-s − 138. i·23-s + 27i·27-s − 71.7·29-s + 212.·31-s − 18.3i·33-s + 66.9i·37-s − 45.6·39-s + ⋯
L(s)  = 1  − 0.577i·3-s − 0.377i·7-s − 0.333·9-s + 0.167·11-s − 0.324i·13-s − 1.44i·17-s + 0.880·19-s − 0.218·21-s − 1.25i·23-s + 0.192i·27-s − 0.459·29-s + 1.23·31-s − 0.0968i·33-s + 0.297i·37-s − 0.187·39-s + ⋯

Functional equation

Λ(s)=(2100s/2ΓC(s)L(s)=((0.894+0.447i)Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}
Λ(s)=(2100s/2ΓC(s+3/2)L(s)=((0.894+0.447i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 21002100    =    2235272^{2} \cdot 3 \cdot 5^{2} \cdot 7
Sign: 0.894+0.447i-0.894 + 0.447i
Analytic conductor: 123.904123.904
Root analytic conductor: 11.131211.1312
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: χ2100(1849,)\chi_{2100} (1849, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 2100, ( :3/2), 0.894+0.447i)(2,\ 2100,\ (\ :3/2),\ -0.894 + 0.447i)

Particular Values

L(2)L(2) \approx 1.6506955551.650695555
L(12)L(\frac12) \approx 1.6506955551.650695555
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1+3iT 1 + 3iT
5 1 1
7 1+7iT 1 + 7iT
good11 16.11T+1.33e3T2 1 - 6.11T + 1.33e3T^{2}
13 1+15.2iT2.19e3T2 1 + 15.2iT - 2.19e3T^{2}
17 1+101.iT4.91e3T2 1 + 101. iT - 4.91e3T^{2}
19 172.9T+6.85e3T2 1 - 72.9T + 6.85e3T^{2}
23 1+138.iT1.21e4T2 1 + 138. iT - 1.21e4T^{2}
29 1+71.7T+2.43e4T2 1 + 71.7T + 2.43e4T^{2}
31 1212.T+2.97e4T2 1 - 212.T + 2.97e4T^{2}
37 166.9iT5.06e4T2 1 - 66.9iT - 5.06e4T^{2}
41 1+12.4T+6.89e4T2 1 + 12.4T + 6.89e4T^{2}
43 1398.iT7.95e4T2 1 - 398. iT - 7.95e4T^{2}
47 1+176.iT1.03e5T2 1 + 176. iT - 1.03e5T^{2}
53 1131.iT1.48e5T2 1 - 131. iT - 1.48e5T^{2}
59 1654.T+2.05e5T2 1 - 654.T + 2.05e5T^{2}
61 1+120.T+2.26e5T2 1 + 120.T + 2.26e5T^{2}
67 1+310.iT3.00e5T2 1 + 310. iT - 3.00e5T^{2}
71 1+400.T+3.57e5T2 1 + 400.T + 3.57e5T^{2}
73 1+243.iT3.89e5T2 1 + 243. iT - 3.89e5T^{2}
79 1553.T+4.93e5T2 1 - 553.T + 4.93e5T^{2}
83 1+756.iT5.71e5T2 1 + 756. iT - 5.71e5T^{2}
89 1+80.1T+7.04e5T2 1 + 80.1T + 7.04e5T^{2}
97 1+1.10e3iT9.12e5T2 1 + 1.10e3iT - 9.12e5T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.291873611187854006842095537476, −7.60123775786496653545902087021, −6.91066186221949859099543521203, −6.20220851884038192561221006329, −5.19208010947653784634598832814, −4.45721565717215445250033683782, −3.22664717279421976539576011856, −2.49843957876396792451094506957, −1.18071549634752870099107060319, −0.37036535816253886462649550025, 1.21143135473428404046741468497, 2.31111213033764325647753014869, 3.47374845251050066080306907759, 4.07753635431654939132569353661, 5.18360490582439903557757144565, 5.78621672022298949313648431573, 6.66326967605597784807901054606, 7.62967474167803303135359313629, 8.411345360852994940456180229166, 9.115933993606922661109550739563

Graph of the ZZ-function along the critical line