L(s) = 1 | − 3i·3-s − 7i·7-s − 9·9-s + 6.11·11-s − 15.2i·13-s − 101. i·17-s + 72.9·19-s − 21·21-s − 138. i·23-s + 27i·27-s − 71.7·29-s + 212.·31-s − 18.3i·33-s + 66.9i·37-s − 45.6·39-s + ⋯ |
L(s) = 1 | − 0.577i·3-s − 0.377i·7-s − 0.333·9-s + 0.167·11-s − 0.324i·13-s − 1.44i·17-s + 0.880·19-s − 0.218·21-s − 1.25i·23-s + 0.192i·27-s − 0.459·29-s + 1.23·31-s − 0.0968i·33-s + 0.297i·37-s − 0.187·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.650695555\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.650695555\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 3iT \) |
| 5 | \( 1 \) |
| 7 | \( 1 + 7iT \) |
good | 11 | \( 1 - 6.11T + 1.33e3T^{2} \) |
| 13 | \( 1 + 15.2iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 101. iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 72.9T + 6.85e3T^{2} \) |
| 23 | \( 1 + 138. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 71.7T + 2.43e4T^{2} \) |
| 31 | \( 1 - 212.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 66.9iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 12.4T + 6.89e4T^{2} \) |
| 43 | \( 1 - 398. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 176. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 131. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 654.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 120.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 310. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 400.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 243. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 553.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 756. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 80.1T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.10e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.291873611187854006842095537476, −7.60123775786496653545902087021, −6.91066186221949859099543521203, −6.20220851884038192561221006329, −5.19208010947653784634598832814, −4.45721565717215445250033683782, −3.22664717279421976539576011856, −2.49843957876396792451094506957, −1.18071549634752870099107060319, −0.37036535816253886462649550025,
1.21143135473428404046741468497, 2.31111213033764325647753014869, 3.47374845251050066080306907759, 4.07753635431654939132569353661, 5.18360490582439903557757144565, 5.78621672022298949313648431573, 6.66326967605597784807901054606, 7.62967474167803303135359313629, 8.411345360852994940456180229166, 9.115933993606922661109550739563