Properties

Label 2100.4.k.o
Level 21002100
Weight 44
Character orbit 2100.k
Analytic conductor 123.904123.904
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,4,Mod(1849,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.1849");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 2100=223527 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2100.k (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 123.904011012123.904011012
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,109)\Q(i, \sqrt{109})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+55x2+729 x^{4} + 55x^{2} + 729 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3β1q3+7β1q79q9+(2β3+27)q11+(5β237β1)q13+(5β2+49β1)q17+(9β321)q1921q21+(16β229β1)q23++(18β3243)q99+O(q100) q + 3 \beta_1 q^{3} + 7 \beta_1 q^{7} - 9 q^{9} + ( - 2 \beta_{3} + 27) q^{11} + (5 \beta_{2} - 37 \beta_1) q^{13} + (5 \beta_{2} + 49 \beta_1) q^{17} + (9 \beta_{3} - 21) q^{19} - 21 q^{21} + (16 \beta_{2} - 29 \beta_1) q^{23}+ \cdots + (18 \beta_{3} - 243) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q36q9+108q1184q1984q21496q29+432q31+444q39384q41196q49588q51+1492q59+104q61+348q692020q71+2840q79+324q81+972q99+O(q100) 4 q - 36 q^{9} + 108 q^{11} - 84 q^{19} - 84 q^{21} - 496 q^{29} + 432 q^{31} + 444 q^{39} - 384 q^{41} - 196 q^{49} - 588 q^{51} + 1492 q^{59} + 104 q^{61} + 348 q^{69} - 2020 q^{71} + 2840 q^{79} + 324 q^{81}+ \cdots - 972 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+55x2+729 x^{4} + 55x^{2} + 729 : Copy content Toggle raw display

β1\beta_{1}== (ν3+28ν)/27 ( \nu^{3} + 28\nu ) / 27 Copy content Toggle raw display
β2\beta_{2}== (ν3+82ν)/27 ( \nu^{3} + 82\nu ) / 27 Copy content Toggle raw display
β3\beta_{3}== 2ν2+55 2\nu^{2} + 55 Copy content Toggle raw display
ν\nu== (β2β1)/2 ( \beta_{2} - \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β355)/2 ( \beta_{3} - 55 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== 14β2+41β1 -14\beta_{2} + 41\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2100Z)×\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times.

nn 701701 10511051 11771177 15011501
χ(n)\chi(n) 11 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1849.1
4.72015i
5.72015i
4.72015i
5.72015i
0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
1849.2 0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
1849.3 0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
1849.4 0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.4.k.o 4
5.b even 2 1 inner 2100.4.k.o 4
5.c odd 4 1 2100.4.a.q 2
5.c odd 4 1 2100.4.a.t yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2100.4.a.q 2 5.c odd 4 1
2100.4.a.t yes 2 5.c odd 4 1
2100.4.k.o 4 1.a even 1 1 trivial
2100.4.k.o 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(2100,[χ])S_{4}^{\mathrm{new}}(2100, [\chi]):

T11254T11+293 T_{11}^{2} - 54T_{11} + 293 Copy content Toggle raw display
T134+8188T132+1838736 T_{13}^{4} + 8188T_{13}^{2} + 1838736 Copy content Toggle raw display
T174+10252T172+104976 T_{17}^{4} + 10252T_{17}^{2} + 104976 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T2+49)2 (T^{2} + 49)^{2} Copy content Toggle raw display
1111 (T254T+293)2 (T^{2} - 54 T + 293)^{2} Copy content Toggle raw display
1313 T4+8188T2+1838736 T^{4} + 8188 T^{2} + 1838736 Copy content Toggle raw display
1717 T4+10252T2+104976 T^{4} + 10252 T^{2} + 104976 Copy content Toggle raw display
1919 (T2+42T8388)2 (T^{2} + 42 T - 8388)^{2} Copy content Toggle raw display
2323 T4+57490T2+732405969 T^{4} + 57490 T^{2} + 732405969 Copy content Toggle raw display
2929 (T2+248T+12651)2 (T^{2} + 248 T + 12651)^{2} Copy content Toggle raw display
3131 (T2216T+764)2 (T^{2} - 216 T + 764)^{2} Copy content Toggle raw display
3737 T4+99914T2+427455625 T^{4} + 99914 T^{2} + 427455625 Copy content Toggle raw display
4141 (T2+192T+2240)2 (T^{2} + 192 T + 2240)^{2} Copy content Toggle raw display
4343 T4++22223951929 T^{4} + \cdots + 22223951929 Copy content Toggle raw display
4747 T4++5111106064 T^{4} + \cdots + 5111106064 Copy content Toggle raw display
5353 T4++1035552400 T^{4} + \cdots + 1035552400 Copy content Toggle raw display
5959 (T2746T+59668)2 (T^{2} - 746 T + 59668)^{2} Copy content Toggle raw display
6161 (T252T20688)2 (T^{2} - 52 T - 20688)^{2} Copy content Toggle raw display
6767 T4++13452056289 T^{4} + \cdots + 13452056289 Copy content Toggle raw display
7171 (T2+1010T+244125)2 (T^{2} + 1010 T + 244125)^{2} Copy content Toggle raw display
7373 T4++15680048400 T^{4} + \cdots + 15680048400 Copy content Toggle raw display
7979 (T21420T+479575)2 (T^{2} - 1420 T + 479575)^{2} Copy content Toggle raw display
8383 T4++1079878445584 T^{4} + \cdots + 1079878445584 Copy content Toggle raw display
8989 (T2+390T+24836)2 (T^{2} + 390 T + 24836)^{2} Copy content Toggle raw display
9797 T4++93061603600 T^{4} + \cdots + 93061603600 Copy content Toggle raw display
show more
show less