Properties

Label 2-2106-13.12-c1-0-40
Degree $2$
Conductor $2106$
Sign $0.435 + 0.899i$
Analytic cond. $16.8164$
Root an. cond. $4.10079$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 4-s − 1.57i·5-s + 3.67i·7-s i·8-s + 1.57·10-s − 2.10i·11-s + (−3.24 + 1.57i)13-s − 3.67·14-s + 16-s − 3.52·17-s − 5.91i·19-s + 1.57i·20-s + 2.10·22-s − 2.24·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s − 0.703i·5-s + 1.38i·7-s − 0.353i·8-s + 0.497·10-s − 0.633i·11-s + (−0.899 + 0.435i)13-s − 0.981·14-s + 0.250·16-s − 0.855·17-s − 1.35i·19-s + 0.351i·20-s + 0.447·22-s − 0.468·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2106 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.435 + 0.899i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2106 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.435 + 0.899i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2106\)    =    \(2 \cdot 3^{4} \cdot 13\)
Sign: $0.435 + 0.899i$
Analytic conductor: \(16.8164\)
Root analytic conductor: \(4.10079\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2106} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2106,\ (\ :1/2),\ 0.435 + 0.899i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7992323293\)
\(L(\frac12)\) \(\approx\) \(0.7992323293\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 \)
13 \( 1 + (3.24 - 1.57i)T \)
good5 \( 1 + 1.57iT - 5T^{2} \)
7 \( 1 - 3.67iT - 7T^{2} \)
11 \( 1 + 2.10iT - 11T^{2} \)
17 \( 1 + 3.52T + 17T^{2} \)
19 \( 1 + 5.91iT - 19T^{2} \)
23 \( 1 + 2.24T + 23T^{2} \)
29 \( 1 - 5.24T + 29T^{2} \)
31 \( 1 - 0.672iT - 31T^{2} \)
37 \( 1 + 0.287iT - 37T^{2} \)
41 \( 1 + 12.4iT - 41T^{2} \)
43 \( 1 + 8.48T + 43T^{2} \)
47 \( 1 + 3.81iT - 47T^{2} \)
53 \( 1 - 7.71T + 53T^{2} \)
59 \( 1 - 1.14iT - 59T^{2} \)
61 \( 1 + 15.2T + 61T^{2} \)
67 \( 1 - 4.48iT - 67T^{2} \)
71 \( 1 + 5.01iT - 71T^{2} \)
73 \( 1 + 10.4iT - 73T^{2} \)
79 \( 1 - 0.244T + 79T^{2} \)
83 \( 1 + 8.38iT - 83T^{2} \)
89 \( 1 - 0.899iT - 89T^{2} \)
97 \( 1 + 14.5iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.770007363853994717287842483186, −8.530125353308220611282372092933, −7.32272460518615984327187092339, −6.59944309855074981363995284723, −5.75384750034671993559274652926, −5.01532085408756970379638370472, −4.46248696673765329921653096501, −3.02068249966833165906844365450, −2.04931742346244181312500724322, −0.29173619884641526771046082871, 1.26330219257195615299773248059, 2.46135682274385866355924884339, 3.37670315783178198278306512524, 4.28344126351414951062977998907, 4.89884934300186762381751110121, 6.23427660987195005171739562201, 6.97559053151719615628406185665, 7.69484702229027174708537992638, 8.385549505390051901062748248622, 9.676621277936540865018075909620

Graph of the $Z$-function along the critical line